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Abstract—This paper deals with the estimation of the short-
term predictor (STP) parameters of speech and noise in a bin-
aural framework. A binaural model based approach is proposed
for estimating the power spectral density (PSD) of speech and
noise at the individual ears for an arbitrary position of the
speech source. The estimated PSDs can be subsequently used
for enhancement in a binaural framework. The experimental
results show that taking into account the position of the speech
source using the proposed method leads to improved modelling
and enhancement of the noisy speech.

Index Terms—autoregressive modelling, binaural speech en-
hancement

I. INTRODUCTION

Understanding of speech in difficult listening situations
like cocktail party scenarios is a major issue for the hearing
impaired. Speech enhancement capabilities of a hearing aid
(HA) in such scenarios have been observed to be limited.
Generally, a hearing impaired person is fitted with HAs at both
ears. With the recent developments in HA technology, HAs
are able to communicate with each other through a wireless
link and share information. This enables binaural processing of
signals. Binaural processing of noisy signals has shown to be
more effective than processing the noisy signal independently
at each ear [1]. Some binaural speech enhancement algorithms
with multiple microphones present in each hearing aid have
been previously proposed in [2], [3].

However, in this work we are concerned with binaural
speech enhancement algorithms with access to only one micro-
phone per HA. This is obseved in in-the-ear (ITE) HAs, where
the space constraints limit the number of microphones per HA.
Some of the existing algorithms with a single microphone
present in each hearing aid are [4]–[6]. These algorithms
perform the enhancement in the frequency domain by assum-
ing that the speech and noise components are uncorrelated,
and do not take into consideration the dynamics of speech
production process. It was recently proposed in [7], [8] to
perform binaural enhancement of speech while taking into
account the speech production model. The filter parameters
here consists of the STP parameters of speech and noise. STP
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parameters constitute of the autoregressive (AR) parameters
representing the spectral envelope and the excitation variance
corresponding to the gain of the envelope. These parameters
can be used to parametrically model the speech and noise
PSDs at the individual ears. The estimation of these filter
parameters in [7], [8] assumed that the speaker source is in
the nose direction of the listener. Due to this assumption, the
speech PSDs at the two ears were modelled in [7], [8] using
the same set of STP parameters. This type of modelling might
not be appropriate if the speaker is not in the nose direction.
This scenario is of interest, as it has been observed in [9], [10],
that the Speech Reception Threshold (SRT) is not always the
minimum when the speaker is in the nose direction. It was
noticed that the listeners often tend to orient their head away
from the speech source for an improvement in the SRT. Thus,
in this paper, we propose a method to take the position of the
speaker into account while estimating the speech and noise
PSDs at the two ears. This leads to the estimation of individual
speech PSDs for the two ears. A codebook based approach,
which takes into account the a priori information regarding
the speech and noise AR spectral envelopes is proposed to
estimate the STP parameters. The method proposed in this
paper uses a multiplicative update method [11] commonly used
in non-negative matrix factorisation (NMF) applications [12]
to estimate the gain parameters corresponding to the speech
and noise AR processes.

The remainder of the paper is structured as follows. Section
II motivates the problem and also introduces the signal model
used in the paper. Section III explains the proposed method
of estimating the speech and noise STP parameters in detail.
Experiments and results are presented in Section IV followed
by conclusion in Section V.

II. MOTIVATION

In this section we introduce the signal model and motivate
this work. The binaural noisy signals at the left/right ear,
denoted by zl/r(n) is written as

zl/r(n) = sl/r(n) + wl/r(n) ∀n = 0, 1, 2 . . . , (1)

where sl/r(n) is the clean speech component and wl/r(n) is
the noise component. A very popular way to represent the
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Fig. 1: Gain normalised spectral envelopes for the left and right
channel
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Fig. 2: Plot of the excitation variances for the left and right channel

clean speech component is in the form of an AR process.
In [7], [8], it was assumed that the target speaker is located
in the nose direction of the listener. Due to this assumption,
the clean speech component at both ears were represented
using AR processes having the same set of STP parameters.
This modelling is reasonable as long as the speaker is in the
nose direction of the listener. However, it might not be an
appropriate model for the case when speaker is not present in
the nose direction. Here, we have conducted a few simulations
to show the properties of the parameters corresponding to the
speech component present at the left and right microphones.
The speaker position is set to be 40 degree right of the listener
at a distance of 80 cm. Fig. 1 shows a snapshot of the gain
normalised spectral envelopes for the left and right channel. It
can be seen that the gain normalised spectral envelopes at the
left and right channels have approximately the same content. In
comparison to the AR spectral envelopes, it can be seen from
Fig. 2, that there is considerable difference in the excitation
variances between the left and right channels. This can be
explained due to the head shadowing effect, which leads to
an attenuation of the intensity at the ear on the far side (left
ear in this case). Motivated by these observations in figures 1
and 2, we model the speech component at the left and right
ears using the same spectral envelope but different excitation
variances as

sl/r(n) =
( P∑
i=1

aisl/r(n− i)
)
+ ul/r(n), (2)

where {ai}Pi=1 is the set of speech AR parameters and ul/r(n)
is white Gaussian noise (WGN) with zero mean and excitation
variance σ2

ul/r
(n). It is also assumed that the noise component

at both ears have similar spectral shape. This is due to the
diffuse noise field assumption. The noise components can be

similarly expressed as an AR process of order Q as follows,

wl/r(n) =
( Q∑
i=1

biwl/r(n− i)
)
+ v(n). (3)

where {bi}Qi=1 is the set of noise AR parameters and v(n) is
white Gaussian noise (WGN) with zero mean and excitation
variance σ2

v(n). STP parameters corresponding to speech and
noise are considered to be constant over a duration of 25ms.

III. MODEL BASED ESTIMATION OF STP PARAMETERS

The speech and noise STP parameters required for the
enhancement are estimated frame-wise using a codebook
based approach [7], [13]. The estimation of these parameters
uses a priori information about the speech and noise spectral
envelopes present in trained codebooks in the form of Linear
Prediction Coefficients (LPC). These trained parameters offers
us an elegant way to take into account prior information
regarding the noise type and speaker of interest. Here, we use
a Bayesian framework for estimating the STP parameters. The
random variables (r.v) corresponding to the parameters to be
estimated are represented as θ = [θs θw] = [a;σ2

u;b;σ
2
v ; c],

where a,b corresponds to r.v representing the speech and
noise AR parameters, σ2

u, σ
2
v representing the speech and noise

excitation variances and c corresponds to the scale parameter
that relates to the excitation variance between the left and right
ear i.e. σ2

ul
= σ2

u and σ2
ur

= c × σ2
u. In this work, scale

parameter is considered time varying, to take into account
the changes in speaker position. Fig. 3 shows a basic block
diagram of the enhancement framework, where it can be
seen that the STP parameters are estimated jointly using the
information at the left and right channels. Thus, the MMSE
estimate of the parameter vector

θ̂ = E(θ|zl, zr) =
∫

Θ

θ
p(zl, zr|θ)p(θ)

p(zl, zr)
dθ, (4)

where zl and zr is a frame of length N of noisy speech
at the left and right ears respectively. Let us define θML

ij =

[ai;σ
2,ML
u,ij ;bj ;σ

2,ML
v,ij ; cML

ij ] where ai is the ith entry of speech
codebook (of size Ns), bj is the jth entry of the noise
codebook (of size Nw) and σ2,ML

u,ij , σ
2,ML
v,ij and cML

ij represents
the maximum likelihood (ML) estimates of the excitation
variances and the scale parameter respectively for the ij th

Speech
Enhancer

Parameter
Estimation

Speech
Enhancer

zl(n)

zr(n)

ŝl(n)

ŝr(n)

Fig. 3: Basic block diagram of the binaural enhancement framework



combination of the codebook entries. Using the above defini-
tion, (4) is approximated as [13]

θ̂ =

Ns∑
i=1

Nw∑
j=1

θML
ij

p(zl, zr|θML
ij )p(θML

ij )

p(zl, zr)
, (5)

where the MMSE estimate is expressed as a weighted
linear combination of θML

ij with weights proportional to
p(zl, zr|θML

ij ). It is assumed that the left and right noisy
signal are conditionally independent given θML

ij , which leads
to p(zl, zr|θML

ij ) being written as,

p(zl, zr|θML
ij ) = p(zl|θML

ij )p(zr|θML
ij ). (6)

As the scale term is not used for modelling the spectrum at
the left ear the likelihood p(zl|θML

ij ) is expressed as

p(zl|θML
ij ) = p(zl|[ai;σ2,ML

u,ij ;bj ;σ
2,ML
v,ij ]). (7)

Similarly p(zr|θML
ij ) is expressed as

p(zr|θML
ij ) = p(zr|[ai; cML

ij × σ
2,ML
u,ij ;bj ;σ

2,ML
v,ij ]) (8)

Logarithm of the likelihood p(zl|θML
ij ) can be written as being

proportional to the negative of Itakura-Saito (IS) divergence
between the noisy periodogram at the left ear Pzl(k) and the
modelled noisy spectral envelope P̂ML

zl,ij
(k), where k corre-

sponds to the frequency index [13]. Using the same result
for the right ear, p(zl, zr|θML

ij ) can be written as

p(zl, zr|θML
ij ) = K exp

(
− N

2

(
dIS
[
Pzl(k), P̂

ML
zl,ij (k)

]
+dIS

[
Pzr (k), P̂

ML
zr,ij (k)

] )) (9)

where P̂ML
zl,ij

(k) and P̂ML
zr,ij (k) are denoted as

P̂ML
zl,ij

(k) =
σ2,ML
u,ij

|Ais(k)|2
+

σ2,ML
v,ij

|Ajw(k)|2
, (10)

P̂ML
zr,ij (k) =

cML
ij σ

2,ML
u,ij

|Ais(k)|2
+

σ2,ML
v,ij

|Ajw(k)|2
(11)

and 1/|Ais(k)|2 is the spectral envelope corresponding to the
ith entry of the speech codebook, 1/|Ajw(k)|2 is the spectral
envelope corresponding to the jth entry of the noise codebook.
For a particular combination of the speech and noise codebook
entries, the ML estimates of the excitation variances are
estimated by maximising p(zl, zr|θij). This is equivalent to
minimising the total IS distortion as seen in (9) given by

TIS = dIS[Pzl(k), P̂zl,ij (k)] + dIS[Pzr (k), P̂zr,ij (k)], (12)

where P̂zl,ij and P̂zr,ij has the same form as in (10) and
(11). Here, we use a multiplicative method to estimate the
excitation variances and scale term that leads to a minimisation
of the cost function in (12). In the multiplicative update
method, the value of the variable at (l + 1)th iteration is
computed by multiplying the value of the variable at lth

iteration with the ratio between the negative component of

the the gradient and the positive component of the gradient,
which is mathematically written as [12], φl+1 ← φl Of(φl)−

Of(φl)+
,

where φ is the variable of interest. Taking the derivative of (12)
with respect to speech and noise excitation variances, and the
scaling term c, we get

∂TIS

∂σ2
u,ij

=
1

N

N∑
k=1

1
|Ai

s(k)|2

P̂zl,ij (k)
−

Pzl
(k)

|Ai
s(k)|2

P̂zl,ij (k)
2
+

cij
|Ai

s(k)|2

P̂zr,ij (k)
−

cijPzr (k)
|Ai

s(k)|2

P̂zr,ij (k)
2

(13)

∂TIS

∂σ2
v,ij

=
1

N

N∑
k=1

1

|Aj
w(k)|2

P̂zl,ij (k)
−

Pzl
(k)

|Aj
w(k)|2

P̂zl,ij (k)
2
+

1

|Aj
w(k)|2

P̂zr,ij (k)
−

Pzr (k)

|Aj
w(k)|2

P̂zr,ij (k)
2

(14)

∂TIS

∂cij
=

1

N

N∑
k=1

σ2
u,ij

|Ai
s(k)|2

P̂zr,ij (k)
−

σ2
u,ijPzr (k)

|Ai
s(k)|2

P̂zr,ij (k)
2

(15)

Using the multiplicative update rule, the values for the excita-
tion noise variances are computed iteratively as shown below

σ
2(l+1)
u,ij ← σ

2(l)
u,ij

N∑
k=1

Pzl
(k)

|Ai
s(k)|2P̂zl,ij

(k)2
+

c
(l)
ij Pzr (k)

|Ai
s(k)|2P̂zr,ij

(k)2

N∑
k=1

1
|Ai

s(k)|2P̂zl,ij
(k)

+
c
(l)
ij

|Ai
s(k)|2P̂zr,ij

(k)

(16)

σ
2(l+1)
v,ij ← σ

2(l)
v,ij

N∑
k=1

Pzl
(k)

|Aj
w(k)|2P̂zl,ij

(k)2
+

Pzr (k)

|Aj
w(k)|2P̂zr,ij

(k)2

N∑
k=1

1

|Aj
w(k)|2P̂zl,ij

(k)
+ 1

|Aj
w(k)|2P̂zr,ij

(k)

(17)

c
(l+1)
ij ← c

(l)
ij

N∑
k=1

σ
2(l)
u,ijPzr (k)

|Ai
s(k)|2P̂zr,ij

(k)2

N∑
k=1

σ
2(l)
u,ij

|Ai
s(k)|2P̂zr,ij

(k)

. (18)

It should be noted that P̂zl,ij (k) and P̂zr,ij (k) used in (16),
(17) and (18) in the lth iteration is computed using excitation
variances and the scale parameter from the (l− 1)th iteration.
We have summarised the proposed algorithm for estimating
the speech and noise STP parameters in Algorithm 1.

Algorithm 1 Summary of the estimation framework

1: while new time-frames are available do
2: for ∀i ∈ Ns do
3: for ∀j ∈ Nw do
4: compute the ML estimates of excitation noise variances

and the scale term (σ2,ML
u,ij , σ

2,ML
v,ij , c

ML
ij ) using (16), (17)

and (18)
5: compute the modelled spectrum for left channel P̂ML

zl,ij

and right channel P̂ML
zr,ij using (10) and (11) respectively

6: compute the likelihood values p(zl, zr|θML
ij ) using (9)

7: end for
8: end for
9: Get the estimates of STP parameters (σ̂2

u, {âi}Pi=1, σ̂2
v ,

{b̂i}Qi=1, ĉ) using (5)
10: end while



IV. EXPERIMENTS

This section will elaborate on the experiments used to
evaluate the proposed algorithm. The test audio files used for
the experiments consisted of speech from the GRID database
[14] re-sampled to 8 kHz. The noise signal used is a binaural
babble recording from the ETSI database [15], which was
recorded with two microphones placed on a dummy head.
Binaural noisy signals were generated by convolving the clean
speech signal with binaural anechoic head related impulse
responses (HRIR) corresponding to ITE HAs obtained from
[16] and adding the binaural noise signals to the convolved
signals. The experiments were performed for different posi-
tions of the speakers (the position of the speaker is defined
as in Fig. 4). The speech and noise STP parameters required
for the enhancement process are estimated every 25 ms, as
explained in Section III. For our experiments, we have used a
speech codebook of 64 entries, which was generated using the
generalised Lloyd algorithm [17] on a training sample of 2-4
minutes of HRIR convolved speech from the specific speaker
of interest. Using a speaker specific codebook instead of a gen-
eral speech codebook leads to improvement in performance,
and a comparison between the two is studied in [18]. The
HRIR used for convolving the training signal corresponded
to zero degrees, whereas the test signals consisted of speech
coming form different directions. It should be noted that the
sentences used for training the codebook was not included in
the test sequence. The noise codebook consisting of only 8
entries, is generated using thirty seconds of noise signal. The
audio samples used for training the noise signal was different
from audio samples used for testing. The AR order for the
speech and noise signal is chosen to be 14. The codebooks
as well as MATLAB code for generating the codebooks will
be available at https://tinyurl.com/mskcreatevbn. We
have evaluated the proposed method in terms of the accuracy in
the estimation of STP parameters as well as the enhancement
performance.

A. Accuracy in the estimation of STP parameters

This section evaluates the proposed algorithm in terms of
the accuracy in the estimation of STP parameters. Fig. 5 shows
the plots of the true and estimated speech excitation variances
(for the left and right channels) for speaker position at 30
degree to the left of the listener at a distance of 80 cm, for a
particular test signal. It can be seen that the proposed method
captures the difference in speech excitation variances between
the two channels. We now evaluate the ability of the proposed
algorithm to deal with changes in the speaker position. For
the experiments, the position of the speaker has been varied
from −15 degree to 0 degree at frame index 149 and from 0
degree to 10 degree at frame index 285 at a distance of 80 cm.
Fig. 6 shows the estimated value of the scale parameter along
the frame index for different speaker positions. It can be seen
from Fig. 6 that the ĉ has a value of approximately 0.2 until
frame index 141 and then changes to approximately 1 from
frame index 149 until 282, and finally changes to 2 from then
onwards. The ĉ for the first one third portion has a value less

Fig. 4: Figure showing the top view of the listener. Position of the
speaker has been varied for the experiments
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Fig. 5: Plot of the true and estimated speech excitation variances

than 1 as the speaker is located to the left of the listener. In
this case, the level of the signal at the right ear is attenuated
in comparison to the level at the left ear, due to the head
shadowing effect. For the second portion ĉ is approximately
1 as the speaker is located in front of the listener. As the
speaker position is changed to 10 degree right of listener, ĉ
has a value of around 2, as the speaker is closer to the right
ear. The position of the speaker can be easily tracked without
any delay using the proposed method, as the scale parameter
is estimated for every frame index. Moreover, the proposed
method does not require the knowledge of the speaker position
at any stage to initialise the value of the scale parameter. It
should be noted that the scale parameter is relevant only in the
speech active regions. Thus, the aberrations present in Fig. 6
can be explained by the speech being absent in certain time
frames.

100 200 300 400
0

1

2

3

Frame index

ĉ

Fig. 6: Plot of the estimated scale parameter (ĉ)

Next, we compute the total IS divergence between the ob-
served noisy periodograms and the modelled spectrums for test
signals taken form the GRID database. This measure shows
the ability of the estimated parameters to fit the observed noisy
spectrum. For this experiment, the position of the speaker is
varied around the listener for two different distances at SNR =
5 dB. Table I shows the computed IS divergences for different
speaker positions for the proposed method and the method
in [7] which we denote as BSTP. It should be noted that



the excitation gains in [7] were calculated by minimising an
approximate cost function as opposed to here. Thus, to make
a fair comparison, we have used the multiplicative update
method [11] for computing the excitation variances as used
here for [7]. It can be seen that the estimation of the STP
parameters using the proposed method leads to a reduced IS
divergence between the modelled and the observed spectrums.

TABLE I: Table showing total IS divergence between the modelled
noisy spectrum and the observed noisy periodograms (left + right
channels) for different speaker positions

Angle of the speaker
Distance (cm) −85 −75 −65 −55

Proposed 80 3.61 3.75 3.73 3.65
300 3.62 3.73 3.72 3.62

BSTP [7] 80 3.98 4.30 4.35 4.20
300 3.85 4.16 4.25 4.08

B. Enhancement performance

We now evaluate the benefit of incorporating the speaker
position for enhancement. The framework that we have used
for the experiments is similar to [7] where a fixed lag Kalman
smoother is used for enhancement on each channel. Fig.
7 shows the short-term objective intelligibility (STOI) [19]
scores obtained for the two methods when the speaker is at a
position of −50 degree at 300 cm. The STOI score shown in
the Fig. 7 corresponds to the score obtained for the better
ear. We have compared the propsed method to BSTP and
dual channel speech enhancement method proposed in [4]
which we denote here as TwoChSS. It can be seen that taking
into account the position of the speaker using the proposed
method leads to improvement in the STOI scores especially
in low SNR region. It can be seen that TwoChSS degrades the
performance of the signal in terms of STOI. This is mainly
due to the assumption in TwoChSS that the speaker is in the
nose direction of the listener. It should also be noted that
the performance of the proposed method and BSTP is similar
when the speaker is in the nose direction as ĉ ≈ 1.

0 2 4 6 8

SNR(dB)

0.6

0.7

0.8

0.9

S
T

O
I

BSTP

proposed

TwoChSS

noisy

Fig. 7: Comparison of the STOI scores when the speaker is 50 degrees
to the left of the speaker

V. CONCLUSION

This paper proposed a model based approach for estimating
the STP parameters of speech and noise in a binaural frame-
work. The proposed method is able to take into account the
position of the speaker while estimating the parameters which

leads to an improved modelling of the observed spectrum
in comparison to a previous method proposed in [7]. The
estimated parameters are subsequently used for enhancement
of speech in a binaural framework.
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