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Abstract—This paper proposes a deep neural network for
estimating the directions of arrival (DOA) of multiple sound
sources. The proposed stacked convolutional and recurrent neu-
ral network (DOAnet) generates a spatial pseudo-spectrum (SPS)
along with the DOA estimates in both azimuth and elevation. We
avoid any explicit feature extraction step by using the magnitudes
and phases of the spectrograms of all the channels as input to
the network. The proposed DOAnet is evaluated by estimating
the DOAs of multiple concurrently present sources in anechoic,
matched and unmatched reverberant conditions. The results
show that the proposed DOAnet is capable of estimating the
number of sources and their respective DOAs with good precision
and generate SPS with high signal-to-noise ratio.

I. INTRODUCTION

Direction of arrival (DOA) estimation is the task of identi-
fying the relative position of the sound sources with respect to
the microphone. DOA estimation is a fundamental operation
in microphone array processing and forms an integral part of
speech enhancement [1], multichannel sound source separation
[2] and spatial audio coding [3]. Popular approaches to DOA
estimation are based on time-delay-of-arrival (TDOA) [4], the
steered-response-power (SRP) [5], or on subspace methods
such as multiple signal classification (MUSIC) [6] and the
estimation of signal parameters via rotational invariance tech-
nique (ESPRIT) [7].

The aforementioned methods differ from each other in terms
of algorithmic complexity, and their suitability to various
arrays and sound scenarios. MUSIC specifically is very generic
with regards to array geometry, directional properties and can
handle multiple simultaneously active narrowband sources. On
the other hand, MUSIC and subspace methods in general,
require a good estimate of the number of active sources,
which are often unavailable or difficult to obtain. Furthermore,
MUSIC can suffer at low signal to noise ratio (SNR) and
in reverberant scenarios [8]. In this paper, we propose to
overcome the above shortcomings with a deep neural network
(DNN) method, referred to as DOAnet, that learns the number
of sources from the input data, generates high precision DOA
estimates and is robust to reverberation. The proposed DOAnet
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also generates a spatial acoustic activity map similar to the
MUSIC pseudo-spectrum (SPS) as an intermediate output. The
SPS has numerous applications that rely on a directional map
of acoustic activity such as soundfield visualizations [9], and
room acoustics analysis [10]. In comparison, the proposed
DOAnet outputs the SPS and DOA’s of multiple overlapping
sources similar to any popular DOA estimators like MUSIC,
ESPRIT or SRP without requiring the critical information of
the number of active sound sources. A successful implementa-
tion of this will enable the integration of such DNN methods
to higher-level learning based end-to-end sound analysis and
detection systems.

Recently, several DNN-based approaches have been pro-
posed for DOA estimation [11], [12], [13], [14], [15], [16].
There are six significant differences between them and the
proposed method: a) All the aforementioned works focused
on azimuth estimation, with the exception of [15] where the
2-D Cartesian coordinates of sound sources in a room were
predicted, and [11] trained separate networks for azimuth and
elevation estimation. In contrast, we demonstrate the estima-
tion of both azimuth and elevation for the DOA by sampling
the unit sphere uniformly and predicting the probability of
sound source at each direction. b) The past works focused on
the estimation of a single DOA at every time frame, with the
exception of [13] where localization of azimuth for up to two
sources simultaneously was proposed. On the other hand, the
proposed DOAnet does not algorithmically limit the number
of directions to be estimated, i.e., with a higher number of
audio channels input, the DOAnet can potentially estimate a
larger number of sound events.

c) Past works were evaluated with different array geometries
making comparison difficult. Although the DOAnet can be
applied to any array geometry, we evaluate the method using
real spherical harmonic input signals, which is an emerging
popular spatial audio format under the name Ambisonics.
Microphone signals from various arrays, such as spherical,
circular, planar or volumetric, can be transformed to Am-
bisonic signals by an appropriate transform [17], resulting in a
common representation of the 3-D sound recording. Although
the DOAnet is scalable to higher-order Ambisonics, in this
paper we evaluate it using the compact four-channel first-order
Ambisonics (FOA).

d) Regarding classifiers, earlier methods have used fully
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connected (FC) neural networks [11], [12], [13], [14], [15]
and convolutional neural networks (CNN) [16]. In this work,
along with the CNNs we use recurrent neural network (RNN)
layers. The usage of RNN allows the network to learn long-
term temporal information. Such an architecture is referred
to as a convolutional recurrent neural network (CRNN) in
literature and is the state-of-the-art method in many single-
[18], [19] and multichannel [20], [21] audio tasks. e) Previous
methods used inter-channel features such as generalized cross-
correlation with phase transform (GCC-PHAT) [15], [12],
eigen-decomposition of the spatial covariance matrix [13],
inter-channel time delay (ITD) and inter-channel level differ-
ences (ILD) [11], [14]. More recently, Chakrabarty et al. [16]
proposed to use only the phase component of the spectrogram,
avoiding explicit feature extraction. In the proposed method,
we use both the magnitude and the phase component. Contrary
to [16], which employed omnidirectional sensors only, general
arrays with directional microphones additionally encode the
DOA information in magnitude differences, while Ambisonics
format especially encode directional information mainly in the
magnitude component. f) All previous methods were evaluated
on speech recordings that were synthetically spatialized and
spatially static. We continue to use the static sound sources in
the present work and extend them to a larger variety of sound
events, such as impulsive and transient sounds.

II. METHOD

The block diagram of the proposed DOAnet is presented in
Figure 1. The DOAnet takes multichannel audio as the input
and first extracts the spectrograms of all the channels. The
phases and the magnitudes of the spectrograms are mapped
using a CRNN to two outputs sequentially. The first output,
spatial pseudo-spectrum (SPS) is generated as a regression
task, followed by the DOA estimates as a classification task.
The DOA is defined by the azimuth φ and elevation λ with
respect to the microphone and the SPS is the intensity of sound
along the DOA given by S(φ, λ).

In this paper, we use discrete φ and λ by uniformly sampling
the 2-D polar coordinate space, with a resolution of 10 degrees
in both azimuth and elevation, resulting in 614 sampled
directions. The SPS is computed at each sampled direction,
whereas, a subset of 432 directions is used for DOA, where
the elevations are limited between -60 and 60 degrees.

A. Feature extraction

The spectrogram is calculated for each of the audio channels
whose sampling frequencies are 44100 Hz. A 2048-point
discrete Fourier transform (DFT) is calculated on Hamming
windows of 40 ms with 50 % overlap. We keep 1024 values
of the DFT corresponding to the positive frequencies, without
the zeroth bin. L frames of features, each containing 1024
magnitude and phase values of the DFT extracted in all the
C channels, are stacked in a L × 1024 × 2C 3-D tensor and
used as the input to the proposed neural network. The 2C
dimension results from ordering the magnitude component of
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Fig. 1. DOAnet - neural network architecture for direction of arrival
estimation of multiple sound sources.

all channels first, followed by the phase. We use a sequence
length L of 100 (= 2 s) in this work.

B. Direction of arrival estimation network (DOAnet)

Local shift-invariant features are extracted from the input
spectrogram tensor (L × 1024 × 2C dimension) using CNN
layers. In every CNN layer, the intra-channel time-frequency
features are processed using a receptive field of 3 × 3,
rectified linear unit (ReLU) activation and pad zeros to the
resulting activation map to keep the output dimension equal
to input. Batch normalization and max-pooling operation along
frequency axis are performed after every CNN layer to reduce
the final dimension to L× 2×NC , where NC is the number
of CNN filters in the last CNN layer. The CNN activations are
reshaped to L× 2NC keeping the time axis length unchanged
and fed to RNN layers in order to learn temporal structure.
Specifically, the bi-directional gated recurrent units (GRU)
with tanh activation are used. Further, the RNN output is
mapped to the first output, the SPS, in regression manner using
FC layers with linear activation.

The SPS is further mapped to DOA estimates–the final
output of the proposed method–using a similar CRNN network
as above with two minor architectural changes. An FC layer
is introduced between the CNN and RNN layers to reduce
the dimension of the RNN output. Additionally, the output
layer which predicts the DOA uses sigmoid activation in order
to estimate more than one DOA for a given time frame.
Each node in this output layer represents a direction in 2-
D polar space. During testing, the probabilities at these nodes
are thresholded with a value of 0.5, so that anything greater
suggests the presence of a source in the direction or otherwise
absence of source.

We refer to the combined architecture of SPS and DOA
estimation in this work as DOAnet. The DOAnet is trained
using the target SPS computed at each sampled direction, and
for every time frame applying MUSIC (see Section III-B), and
is represented using nonnegative real numbers. For the DOA
output, the DOAnet aims to make a discrete decision about the
presence of a source in a certain direction; and during training,



the DOAnet uses the ground truth DOAs utilized to synthesize
the audio (see Section III-A).

The DOAnet was trained for 1000 epochs using Adam
optimizer, mean squared error loss for SPS output and binary
cross entropy loss for DOA output. The sum of the two losses
was used for back propagation. Dropout was used after every
layer and early stopping was used if the DOA metric (Sec-
tion III-C) did not improve for 100 epochs. The DOAnet was
implemented using Keras framework with Theano backend.

III. EVALUATION

A. Dataset

In order to evaluate the proposed DOAnet, there are no
publicly available real or synthetic datasets which consist
of general sound events each associated with a 2D spatial
coordinate. Since DNN-based methods need sufficiently large
datasets to train on, most DNN-based methods proposed [11],
[12], [14], [15], [16] have studied the performance on synthetic
datasets. In similar fashion, we evaluate the proposed DOAnet
on synthetic datasets about the same size as in the previous
works.

We synthesize datasets consisting of static point sources
associated with a spatial coordinate in the space in two
contexts - anechoic and reverberant. For each context, three
datasets are generated with no temporally overlapping sources
(O1), maximum two overlapping sources (O2), and maximum
three overlapping sound sources (O3). We refer to the anechoic
context dataset as OxA and reverberant as OxR, where x
denotes the number of overlapping sources. Each of these
datasets has three cross-validation (CV) splits with 240 record-
ings for training and 60 for testing. Recordings are sampled
at 44.1 kHz and 30 s long.

In order to generate these datasets, we use the isolated
real-life sound event recordings from the DCASE 2016 task
2 [22]. This dataset consists of 11 sound event classes, each
with 20 examples. The classes in this dataset included speech,
coughing, door slam, page-turning, phone ringing and key-
board sounds. During CV, for each of the splits, we randomly
chose disjoint sets of 16 and 4 examples for training and
testing, amounting to 176 examples for training and 44 for
testing. In order to synthesize a recording, a random subset of
the 176 or 44 sound examples was chosen from the respective
split. The subset size varied for each recording based on the
chosen sound examples. We start synthesizing a recording by
randomly choosing the beginning time of the first randomly
chosen sound example within the first second of the recording.
The next randomly chosen sound example is placed 250-500
ms after the end of the first sound example. On reaching the
maximum recording length of 30 s, the process is repeated
as many times as the number of required overlapping sound
events.

Each of the sound examples were assigned a DOA randomly
using the following conditions. All sound events were placed
in a spatial grid of ten degrees resolution along both azimuth
and elevation. Two temporally overlapping sound events have
at least ten degrees of spatial separation to avoid spatial

overlapping. The elevation was constrained within the range
of [-60, 60] degrees, as most natural sound events occur in
this range. Finally, for the anechoic dataset, the sound sources
were randomly placed at a distance d in the range 1-10 m.
For the reverberant dataset, the sound events were randomly
placed inside a room of dimensions 10 × 8 × 4 m with the
microphone in the center of the room.

Spatialization for the anechoic case was done as
following. Each point source signal si with DOA
(φi, λi), was converted to Ambisonics format by
multiplying the signal with the vector y(φi, λi) =
[Y00(φi, λi), Y1(−1)(φi, λi), Y10(φi, λi), Y11(φi, λi)]

T of
real orthonormalized spherical harmonics Ynm(φ, λ). The
complete anechoic sound scene multichannel recording xA

was generated as xA =
∑
i gisiy(φi, λi), with the gains

gi < 1 modeling the distance attenuation. Each entry of xA

corresponds to one channel and gi =
√
1/10d/dmax , where

dmax = 10 m is the maximum distance.
In the reverberant case, a fast geometrical acoustics simu-

lator was used to model natural reverberation based on the
rectangular room image-source model [23]. For each point
source si with DOA in the dataset, K image sources were
generated modeling reflections up to a predefined time-limit.
Based on the room and its propagation properties, each
image source was associated with a propagation filter hik
and DOA (φk, λk) resulting in the spatial impulse response
hi =

∑K
k=1 hiky(φk, λk). The reverberant scene signal was

finally generated by xR =
∑
i si ∗ hi, where (∗) denotes

convolution of the source signal with the spatial impulse
responses. The room absorption properties were adjusted to
match reverberation times of typical office spaces. Three sets
of testing data were generated with similar room size as
training data (Room 1), 80% of room size (8× 8× 4 m) and
reverberation time (Room 2), and 60% of room size (8×6×4
m) and reverberation time (Room 3).

B. Baseline

The proposed method to our knowledge is the first DNN-
based implementation for 2D DOA estimation of multiple
overlapping sound events. Thus in order to evaluate the
complete features of the proposed DOAnet, we compare
the performance with the conventional, high-resolution DOA
estimator based on MUSIC. Similar to the SPS and DOA
outputs estimated by the DOAnet, the MUSIC method also
estimates SPS and DOA, thus allowing a direct one-to-one
comparison.

The MUSIC SPS is based on a measure of orthogonality
between the signal subspace (dominated by the source signals)
of the spatial covariance matrix Cs and the noise subspace
(dominated by diffuse and ambient sounds, late reverberation,
and microphone noise). The spatial covariance matrix is cal-
culated as Cs = Ef,t

[
X(f, t)X(f, t)H

]
, where spectrogram

X(f, t) is a frequency f and time t dependent C-dimensional
vector, where C is the number of channels, H is the conjugate
transpose and Ef,t denotes the expectation over f and t. For
a sound scene with O number of sources, the MUSIC SPS



SGT is obtained from Cs by first performing an eigenvalue
decomposition on Cs = EΛEH. The sorted eigenvectors
E (according to eigenvalues with decreasing magnitude) are
further partitioned into the two aforementioned subspaces
E = [Us Un], where Us denotes the signal subspace and
will be composed of O eigenvectors corresponding to the
higher eigenvalues and the rest will form the noise subspace
Un. The SGT along the direction (φi, λi) is now given by
SGT (φi, λi) = 1/(yT(φi, λi)UnUH

ny(φi, λi)). Finally, the
source DOAs are found by selecting the directions (φi, λi)
corresponding to the O largest peaks from SGT .

C. Metric
The DOAnet estimated SPS (SE(φ, λ)) is evaluated

with respect to the baseline MUSIC estimated ground
truth (SGT (φ, λ)) using the SNR metric calculated as
SNR = 10 log10(

∑
φ

∑
λ SGT (φ, λ)

2/
∑
φ

∑
λ(SE(φ, λ) −

SGT (φ, λ))
2).

As the DOA metric we use the angle between the estimate
DOA (defined by azimuth φE and elevation λE) and the
ground truth DOA (φGT , λGT ) used to synthesize the dataset
in degrees. This is calculated as σ = arccos(sinφE sinφGT +
cosφE cosφGT cos(λGT −λE)) · 180.0/π. Further, to accom-
modate the scenario of unequal number of estimated and
ground truth DOAs we calculate and report the minimum
distance between them using the Hungarian algorithm [24]
along with the percentage of frames in which the number of
DOAs estimated were correct. The final metric for the entire
dataset, referred as DOA error, is calculated by normalizing the
minimum distance with the total number of estimated DOA’s.

D. Evaluation procedure
The parameter tuning for DOAnet was performed on the

O1A test data, and the best configuration is as shown in
Figure 1. This configuration has 677 K weights, and the same
configuration is used in all of the following studies.

At test time, the SNR metric for SPS output of the DOAnet
(SE) is calculated with respect to SPS of baseline MUSIC
(SGT ). The DOA metric for the DOAs predicted by DOAnet
and baseline MUSIC are calculated with respect to the ground
truth DOA used to synthesize the dataset.

In the above experiment, the baseline MUSIC algorithm
uses the knowledge of the number of active sources. In order
to have a fair evaluation, we test the DOAnet in a similar
scenario where the number of sources is known. We use this
knowledge to choose the top probabilities in prediction layer
of the DOAnet instead of thresholding it with a value of 0.5.
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(a) MUSIC estimated
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(b) DOAnet estimated
Fig. 2. SPS for two closely located sound sources. The black-cross markers
represent the ground truth DOA. The horizontal axis is azimuth and vertical
axis is elevation angle (in degrees)

TABLE I
EVALUATION METRIC SCORES FOR THE SPATIAL POWER MAP AND DOAS

ESTIMATED BY THE DOANET FOR DIFFERENT DATASETS.

Anechoic Reverberant (Room 1)
Max. no. of
overlapping sources 1 2 3 1 2 3

SPS SNR (in dB) 9.90 3.35 -0.26 3.11 1.24 0.13

DOA error with unknown number of active sources (threshold of 0.5)
DOAnet 0.57 8.03 18.34 6.31 11.46 38.41
Correctly predicted
frames (in %) 95.4 42.7 1.8 59.3 15.8 1.2

DOA error with known number of active sources
DOAnet 1.14 27.52 49.30 12.61 38.98 67.07
MUSIC 2.29 8.60 28.66 25.80 57.33 91.72

IV. RESULTS AND DISCUSSION

The results of the evaluations are presented in Table I.
The high SNRs for SPS in both the contexts, with up to
one and two overlapping sound events show that the SPS
generated by DOAnet (SE) is comparable with the baseline
MUSIC SPS (SGT ). Figure 2 shows the SE and the respective
SGT when two active sources are closely located. In the
case of up to three overlapping sound events, the baseline
MUSIC is already at its theoretical limit of estimating N − 1
sources from N -dimensional signal space [25]. In practice,
for N − 1 sources only one noise subspace vector Un is
used to generate SPS, which for real signals is too weak for
stable estimation. In the present evaluation of DOAnet which is
trained with four-channel audio features and MUSIC SPS, for
the case of three overlapping sound sources the SPS used is an
unstable estimate resulting in poor training and consequently
the results. With more than four-channels input, which the
proposed DOAnet can easily extend to, it can potentially
localize more than two sound sources simultaneously.

The DOA error for the proposed DOAnet when the number
of active sources are unknown is presented in Table I. The
DOAnet error is considerably better in comparison to the
baseline MUSIC that uses the active sources knowledge for
all datasets. However, the number of frames in which DOAnet
produced the correct number of active sources were few. For
example, in the case of anechoic recordings with up to two
overlapping sound events, only 42.7% of the estimated frames
had the correct number of DOA predictions. This prediction
drops even drastically when the number of sources is three,
due to the theoretical limit of MUSIC as explained previously,
and consequently for the DOAnet as MUSIC SPS is used for
training. Finally, the confusion matrix for the number of DOA
estimates per frame for O1 and O2 datasets are visualized

(a) O1A (b) O2A (c) O1R (d) O2R

Fig. 3. Confusion matrix for the number of DOA estimated per frame by the
DOAnet. The horizontal axis is the DOAnet estimate, and the vertical axis is
the ground truth.



TABLE II
EVALUATION SCORES FOR UNMATCHED REVERBERANT ROOM.

Room 2 Room 3
Max. no. of overlapping sources 1 2 1 2
SPS SNR (in dB) 3.53 1.49 3.49 1.46

DOAnet error (Unknown number of sources)
DOAnet 3.44 6.88 4.59 10.89
Correctly predicted frames (in %) 46.2 14.3 49.7 14.1

DOA error (Known number of sources)
DOAnet 8.60 32.10 9.17 33.82
MUSIC 31.52 58.47 33.25 60.76

in Figure 3. We skipped the confusion matrices for the O3
datasets as they were not meaningful for similar reasons as
explained above.

With the knowledge of the number of active sources (Ta-
ble I), the DOAnet performs considerably better than baseline
MUSIC for all datasets other than the O2A and O3A. The
MUSIC DOA’s were chosen using a 2D peak finder on the
MUSIC SPS, whereas the DOA’s in DOAnet were chosen
by simply picking the top probabilities in the final DOA
prediction layer. A smarter peak picking method from the
DOAnet, or using the number of sources as an additional
input can potentially result in better scores across all datasets.
Further, the DOAnet error on unmatched reverberant data is
presented in Table II. The performance of DOAnet is seen to
be consistent in comparison to the matched reverberant data
in Table I, and significantly better than the performance of
MUSIC.

In this paper, since the baseline was chosen to be MUSIC,
for a fair comparison the DOAnet was also trained using
MUSIC SPS. In an ideal scenario, considering the DOAnet
is trained using datasets for which the ground truth DOAs are
known, we can generate accurate high-resolution SPS from the
ground truth DOA’s as per the required application and use
them for training. Alternatively, the DOAnet can be trained
without the SPS to directly generate the DOAs, it was only
used in this paper to present the complete potential of the
method in the limited paper space. In general, the above
results show that the proposed DOAnet has the potential to
learn the 2D direction information of multiple overlapping
sound sources directly from the spectrogram of the input audio
without the knowledge of the number of active sound sources.
An exhaustive study with more detailed experiments including
both synthetic and real datasets are planned for future work.

V. CONCLUSION

A convolutional recurrent neural network (DOAnet) was
proposed for multiple source localization. The DOAnet was
shown to learn the number of active sources directly from
the input spectrogram, and estimate precise DOA in 2-D
polar space. The method was evaluated on anechoic, matched
and unmatched reverberant dataset. The proposed DOAnet
performed considerably better than baseline MUSIC in most
scenarios. Thereby showing the potential of DOAnet in learn-
ing highly computational algorithm without prior knowledge
of the number of sources.
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