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Abstract—The ability to answer all important questions about
the radio-frequency (RF) scene is essential for cognitive radios
(CRs) to be effective. In this paper, we propose a RF-based
automatic traffic recognizer that, observing the radio spectrum
emitted by a communication link and exploiting machine learning
(ML) techniques, is able to distinguish between two types of data
streams. Numerical results based on real waveforms collected by a
RF sensor, demonstrate that over-the-air user traffic classification
is possible with an accuracy of 97% at high signal-to-noise ratios
(SNRs). Moreover, we show that using a neural network (NN)
very good classification performance can be achieved also at low
SNRs (around 2 dB). Finally, the impact of the observed RF
bandwidth and the acquisition time window on the classification
accuracy are analyzed in detail.

I. INTRODUCTION

With the advent of internet of things (IoT), there will be
a rapidly growing demand for radio services by billions of
devices, making the radio spectrum an increasingly valuable
resource. Most of modern communication standards provide a
static utilization of the radio spectrum resources, which results
in its under-utilization [1].

From this perspective, cognitive radio (CR) devices will
have to probe the RF scene in time, space and frequency
domain to ensure that a well defined portion of the spectrum
is free, making multidimensional spectrum analysis manda-
tory [2], [3]. On large scale network infrastructures indeed,
the classification of transmissions, the spatial localization of
sources, and the search for spectrum holes, may benefit by the
extensive use of machine learning (ML) algorithms [4].

Traffic classification may allow to automatically recognize
the user-level application that has generated a given stream
of packets from direct observation of the packets or from
the spectrum occupancy. An in-depth knowledge of the com-
position of traffic, as well as the identification of trends in
application usage, may help CRs improving network design
and provisioning. Moreover, traffic classification represents
the first step in the direction of anomaly detection for the
identification of malicious use of network resources, and for
security operation such as firewalling and filtering of unwanted
traffic. There are many approaches and methodologies for traf-
fic classification proposed in literature [5]. Such methodologies
can be grouped into three main categories [6]. Port-based
classification is used when the protocols are assigned to well-
known transport-layer port (i.e., TCP, HTTP). The main issue

with this method is that many applications use dynamic port-
negotiation mechanisms in order to guarantee the privacy of
the user. Payload-based classifiers inspect the content of pack-
ets beyond the transport layer headers, looking for features in
packet payloads that can distinguish an application protocol
from the others. These classifiers are usually used when
traffic is not encrypted or enclosed into other application-
level protocols. Statistical classification analyses statistical
attributes, also called features, of the received traffic in order
to perform classification through data mining algorithms [5].
This methodology can be applied to encrypted traffic, because
the content of packets is never exploited, it is lightweight in
terms of sensing, but it can be less accurate than payload-based
classifiers.

While traffic classification in wired networks have been
extensively investigated, very few works address the problem
in wireless systems, despite the emergence of CR technology
makes this aspect rather important [6]. This work proposes
a ML approach for traffic classification in wireless networks
using low-cost radio-frequency (RF) sensors. In particular, the
main contributions are the following:

• We propose the use of a blind packet detector which
requires inexpensive RF sensors and preserves the user
privacy.

• We compare the performance of three ML classifiers
such as logistic regression (LR), support vector machines
(SVMs) and neural networks (NNs).

• We provide an in-depth analysis of the classifiers perfor-
mance as a function of the signal-to-noise ratio (SNR)
at the RF sensor, the observed RF bandwidth, and the
acquisition time window.

The numerical results, based on real waveforms captured by
a low-cost software defined radio (SDR), reveal that over-the-
air user traffic classification is possible also at relatively low
SNRs.

The rest of the paper is organized as follows. In Section II
the scenario and the problem setting are described. Section III
provides an overview of the classification algorithms. Exten-
sive numerical results are given in Section IV. Conclusion are
drawn in section V.
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Fig. 1. Experimental setup for over-the-air user traffic inference and an
example of the signal envelope received by the RF sensor.

II. SYSTEM OVERVIEW AND PROBLEM SETUP

Let us consider the scenario sketched in Fig. 1 where a RF
sensor, tuned to a specific frequency, performs a downconver-
sion followed by an analog to digital conversion to capture
samples of a two-way communication between two wireless
devices. For example, without loss of generality, let us consider
the case where we are interested to infer the type of traffic
generated by a user in a WiFi system where the two devices
are a smartphone and an access point (AP) operating in the
2.4GHz band.

With the purpose of observing the temporal flow of the
packets exchanged by the two devices the RF sensor can
be rather simple. The goal is in fact to keep the sensor as
simple (and cheap) as possible and build an automatic traffic
classifier exploiting only features observable by the temporal
evolution of the packets flow. Therefore, all the subsequent
tasks are performed without demodulating the received signals,
so that a simple energy detector (ED) receiver suffices [7] [8].
Using low-cost devices the measurement quality is usually
affected by front-end impairments, low sampling frequency,
low resolution, and low sensitivity. However, as will be shown
in Section IV the samples have been acquired with enough
accuracy to allow the ML algorithms to guarantee good
performance.

As a case study, this paper focuses on some traffic pat-
terns generated by popular apps such as YoutubeTM and
WhatsappTM. In particular, after selecting the proper features
and a training phase, we aim to recognize which type of
application is running on the user’s smartphone. We would like
to remark that this is a toy example chosen with the purpose
to work with readily available data sources.

A. Data pre-processing

The samples, {ri}Ni=1, of the complex envelope of the
received signal at the RF sensor, are pre-processed to detect
the packet and estimate their time-of-arrival (ToA). The sample

rate, fs, can be varied according to the needs. On one hand, a
high sampling rate can guarantee an accurate estimation of the
ToA at the cost of an increasing computational rate required
to processing the samples. On the other hand, a low sampling
rate may alleviate the computational burden but resulting in
a coarser estimate. In Section IV we analyze this trade-off in
detail.

Packet detection and ToA estimation can be impaired by
the additive white Gaussian noise (AWGN) and channel prop-
agation (fading and non-line-of-sight (NLOS)), making the
classification quite challenging, especially in the low SNR
regime.1 For instance, in Fig. 1 we depict an example of signal
samples collected at a SNR of 2 dB, where the noise level is
remarkably high with respect to the signal one.

The need to extract statistical features of the traffic flow
requires an estimate of the ToA of the received packets. To
do so, we use the received samples to detect the presence of
a packet by conventional binary hypothesis test. In particular,
the signal received by the RF sensor can be represented by a
vector of N samples, with elements

ri =

⇢
xi + ⌫i, H1

⌫i, H0
(1)

where H0 and H1 indicate the null hypothesis and the pres-
ence of a packet, respectively, xi is the i-th sample of the
packet related signal and ⌫i is the i-th noise sample, with
i = 1, . . . , N . When the samples xi are unknown, the detection
problem leads to an ED, represented by the test

|ri|
2

H1

?
H0

⌘ (2)

where the threshold ⌘ can be chosen accordingly to the
Neyman-Pearson criterion to guarantee a predefined false
alarm probability. Then, the ToA of the k-th packet, tk,
is represented by the time instant corresponding to upward
threshold crossing.

After obtaining the ToA of two consecutive packets, tk and
tk�1, it is possible to calculate the k-th inter-arrival time ⌧k =
tk�tk�1, which represents the data used to extract the features.

During the training phase NT samples are collected and
processed to obtain nT inter-arrival times, while during the
test phase NO samples are collected and nO inter-arrival times
are obtained. To simplify the notation, in Section II-B the
parameters NT and NO are indicated with N , while nT and
nO are denoted by n.

B. Features selection

Starting from the basic idea that YoutubeTM traffic can be
considered as a dense stream of packets which contains a
relatively large volume of data, and WhatsappTM traffic can
be seen as sparse groups of packets representing the messages
sent and received by the user, there are four relevant features
which characterizes the statistic of packets inter-arrival time:

1In the scenario considered in the numerical results only line-of-sight (LOS)
propagation has been considered.



• Sample mean

M⌧ =
1

n

nX

k=1

⌧k. (3)

• Sample variance

V⌧ =
1

n� 1

nX

k=1

(⌧k �M⌧ )
2. (4)

• Kurtosis, defined as

K⌧ =
m4

m2
2

(5)

where m4 and m2 are respectively the 4th and the 2nd
order moments, estimated from samples as

mq =
1

n

nX

k=1

(⌧k �M⌧ )
q. (6)

• Rate of packets, Rp, i.e., number of packet arrivals per
second.

III. SURVEY OF THE ML ALGORITHMS

In this section, we briefly review the algorithms adopted for
over-the-air traffic classification: LR, SVM, and single-hidden-
layer neural network (SHLNN).

Let us define the feature matrix � 2 RF⇥D where D is the
number of points, i.e., the number of snapshots considered
either in training phase or in the test phase (each snapshot
consists in the capture of samples within an observation
window), while F is the number of features extrapolated for
each point, i.e., F = 4 according to Section II.

The matrix � is related to the association matrix t 2

RD⇥C , where C is the number of classes (or categories);
C = 2 in the current setting. The element tdc of t is 1 when
the d-th observation belongs to the c-th class, otherwise its
value is set to �1. In case there are two classes, as in our
case study, we can equivalently define an association vector,
t, with elements td, that contains 1’s or �1’s with the same
criterion.

From now on it is convenient to extend the number of
features from F to F + 1 appending a row of ones to the
bottom of the feature matrix �.2 This allows the algorithm to
estimate the bias term.

A. Logistic regression
LR is a nonlinear machine learning algorithm often used

for classification problems. For LR the error function, known
as cross-entropy error function, can be written as [9]

E(w) = �

DX

d=1

(td ln(yd) + (1� td) ln(1� yd)) (7)

where yd are the elements of the vector y(�) 2 RD obtained
through a logistic sigmoid acting on a linear function of the
feature matrix, i.e.,

y (�) = �
�
wT�

�
(8)

2To ease the notation the augmented matrix is still denoted by �.
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Fig. 2. The single-hidden-layer neural network considered for over-the-air
traffic classification.

where w 2 RF+1 is the weight vector containing the LR
model coefficients. Conventional iterative algorithms like gra-
dient descent or Newton’s method, can be used to minimize
the error function and find the optimal w that ensures the best
separation between the two classes.

B. Support vector machine

SVM is an evolution of perceptron to overcome convergence
problems and search for an optimal solution [9].

To find the best solution in the case of linearly separable
data, the SVM define the error function by introducing a
regularization term as follows

g(w) =
DX

d=1

ln
⇣
1 + e�yd(x

T
d w)

⌘
+ �||w||

2
2 (9)

where || · ||2 is the `2-norm, and � is a parameter that
controls the trade-off between how well we satisfy the original
constraints and the pursue of a large margin classifier.

C. Neural network

As a third classification approach, we propose a SHLNN.
The basic idea behind a SHLNN is the following. Any scalar
function f(x) with x 2 RS can be sampled in D points
{xd}

D
d=1 with xd 2 RS , and represented with a D-dimensional

vector z = (z1, z2, . . . , zD). Hence, since any vector can
be always represented by a linear combination of the so
called basis vectors, the same reasoning can be applied to
approximate a continuous function. In fact, considering a basis
of continuous functions of cardinality M , {fm(x)}Mm=1, the
sampled function z(xd) can be approximated with a finite
summation

MX

m=0

fm(xd)wm ⇡ z(xd). (10)

It is also possible to use adjustable basis functions. In
this case, the basis are parametrized functions (activation
functions) as [10]

fm(x) = tanh(cm + xTvm) (11)
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Fig. 3. Classification accuracy as a function of the capture window duration
for the three algorithms proposed.

where cm is the activation function bias, and vm are the
activation function parameters. In this case, the error function
can be defined as [10]

g(w) =
DX

d=1

(fTd w � zd)
2 (12)

where fd = (1, f1(xd), f2(xd), . . . , fM (xd))T . This ap-
proach is what in literature is called single-hidden-layer feed
forward NN. Such NN can be easily used for the classification
problem: in that case the samples xd are the columns of the
feature matrix, i.e., � = [x1,x2, . . . ,xD] and S = F . During
the training phase the network tracks the function described by
the matrix of the features and finds the classification regions
boundary. Once the boundary has been found it is possible
to classify new points according to their position on the
hyperplane.

IV. NUMERICAL RESULTS

In this section, we present several tests performed to
compare the classification algorithms and to reveal when a
RF-based traffic classification is possible with satisfactory
accuracy. The RF sensor is represented by the SDR platform
HackRF One operating in receiving mode with bandwidth
20MHz. The maximum bandwidth allowed to capture the
entire IEEE 802.11n signal in the 2.4GHz ISM band. The sen-
sor output is composed by the in-phase and the in-quadrature
baseband signals, each one represented with 8 bit/sample. In
the pre-processing phase, the threshold ⌘ of the ED has
been set to guarantee PFA = 10�3. According to (1) the
SNR is defined as SNR = (

PN
i=1 |xi|

2)/(
PN

i=1 |⌫i|
2). Unless

otherwise specified, the RF sensor was positioned at a distance
of one meter from both user (a smartphone) and AP, on the
red line showed in Fig. 1; the acquisition window during the
training phase and the test phase was N · fs = 5 s for both
classes, i.e., WhatsappTM and YoutubeTM, respectively. Then,
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Fig. 4. Classifiers accuracy as a function of the acquisition bandwidth for
the three algorithms proposed.

the F = 4 features described in Section II were obtained from
the captured data. The performance metric for classification is
the accuracy, defined as percentage of correct classifications.
The SVM parameter � was set to 0.1.

A. Size of the acquisition window

This test aims to find a proper acquisition window duration
to guarantee that the algorithms reach the maximum achievable
accuracy. With this aim, Fig. 3 shows how the accuracy of the
classification algorithms depend on the window width. On one
hand, if the capture window is too short the accuracy degrades
significantly. On the other hand, a capture window larger than
2 s seems to provide only minor performance improvement.
This behavior is related to the time scale for which the features
selected are effective. Moreover, the figure shows that the three
algorithms behave in the same way with short observations,
but increasing the window length the accuracy of LR and SVM
is slightly better than that of the NN. This is probably due to
the different training procedures.

To guarantee the maximum accuracy achievable by the
algorithms, a capture window of 5 s has been chosen for the
following tests.

B. Acquisition bandwidth

This test aims to investigate the trade-off between the
acquisition bandwidth, given by fs, and the performance of the
algorithms. In particular, the sampling rate has been changed
from 625 kHz (i.e., 1/32 of the WiFi signal bandwidth) to
20MHz (i.e., the entire WiFi signal bandwidth), by decima-
tion. As we can see in Fig. 4, the minimum bandwidth that
allows a classification accuracy of 90% is 2MHz for SHLNN
and SVM, and 2.5MHz for LR. Note that a reduction of the
bandwidth affects the correct detection of the packets, reducing
the classification capability of the algorithms.
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C. Neural network cross-validation

As explained in Section III-C, a crucial aspect in NNs is
the choice of the cardinality of the basis, M . Indeed, a high
M might lead to overfitting. The cross-validation process is
necessary to determine how many basis elements, or neurons,
have to be used to correctly train the NN. The well-known k-
fold cross-validation method has been chosen for this purpose,
and nT = nO = 50 points per class have been used for both
training and testing. In Fig. 5 the results of the k-fold cross-
validation are shown, where the error function (12) is plotted
as a function of the number of basis elements M . It is possible
to notice that if M > 5 the error function of the test subset
increases substantially, so M = 5 appears to be the best choice
for this setting.

D. Impact of SNR

To evaluate the robustness of the classification algorithm,
the RF sensor has been moved along the red line shown in
Fig. 1. As expected, an increase of the distance with respect
to the AP-User link causes a decrease of the received power
and of the SNR. A reduction of the SNR degrades the ED
performance, which cause both missed packet detection and
inaccurate ToA estimation. These aspects then reflects on the
quality of the feature extracted and finally on the performance
of the classifier. On this point, it is interesting to understand
the accuracy of the classification algorithms at different SNR
regimes.

For this test, 60 points of training per-class, corresponding
to 60 acquisition windows of length 5 s, have been used.
The classification performance varying the SNR is reported in
Figure 6. Note that the SHLNN provides superior performance
with respect to SVM and LR. Furthermore, LR outperforms
SVM and reaches almost the same performance of the NN for
SNR above 4 dB.
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Fig. 6. Classification accuracy as a function of the SNR for the three
algorithms proposed.

V. CONCLUSION

In this work we proposed and studied a RF-based automatic
traffic recognition exploiting machine learning techniques. The
numerical results based on real waveforms, collected by a RF
sensor, demonstrated that user traffic classification is possible,
that it does not require expensive devices, and that its accuracy
can be larger than 90% even at relatively low SNRs. Using a
NN such very good classification performance can be achieved
also at SNR around 2 dB. Future research directions include
the use of multiple sensors to provide superior performance.
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