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Abstract—The detection of acoustic scenes is a challenging
problem in which environmental sound events must be detected
from a given audio signal. This includes classifying the events as
well as estimating their onset and offset times. We approach this
problem with a neural network architecture that uses the recently-
proposed capsule routing mechanism. A capsule is a group of
activation units representing a set of properties for an entity of
interest, and the purpose of routing is to identify part-whole
relationships between capsules. That is, a capsule in one layer is
assumed to belong to a capsule in the layer above in terms of the
entity being represented. Using capsule routing, we wish to train
a network that can learn global coherence implicitly, thereby
improving generalization performance. Our proposed method is
evaluated on Task 4 of the DCASE 2017 challenge. Results show
that classification performance is state-of-the-art, achieving an F-
score of 58.6%. In addition, overfitting is reduced considerably
compared to other architectures.

I. INTRODUCTION

Sound event detection (SED) is the task of classifying and
localizing sound events in audio such that each detected event
is assigned a class label as well as onset and offset times.
Recently, the problem has received significant attention for
environmental sounds in particular. For example, the series
of challenges on the Detection and Classification of Acoustic
Scenes and Events (DCASE) [1]–[4] has seen a rapid increase
in participation since its first campaign in 2013. The number
of applications that this area encompasses is extensive, and
includes query-based sound retrieval [5], smart homes [6],
smart cities [7], and bioacoustic scene analysis [8].

Compared to speech and music recognition, the general
characteristics of environmental sounds are much broader,
which means it is difficult to apply domain-specific knowledge.
Thus, it is important that the method used is able to perform
well despite little a priori knowledge. Supervised deep learning
methods have largely satisfied this requirement, producing state-
of-the-art results consistently in this task [9]–[12]. On the other
hand, problems such as overfitting have not been completely
eliminated, and this is especially severe for smaller datasets.
To overcome this, we propose a neural network architecture
based on grouping activation units into capsules and using a
procedure called routing during inference.

The notion of a capsule was first introduced in [13] and
very recently revisited in [14] with the addition of a routing
mechanism. Simply put, a capsule represents a set of properties
for a particular entity. The authors of [14] found that routing
with capsules performed better than the state-of-the-art for digit
recognition using the MNIST dataset [15]. The motivation for
capsule routing is that it implicitly learns global coherence by
enforcing part-whole relationships to be learned. For instance, a

person’s eye (the part) should be positioned sensibly relative to
their face (the whole). In this case, we would like to associate a
capsule representing the eye’s position to a capsule representing
a matching position for the face. If such an association cannot
be made, it is less likely that a face has been identified.

As a result of this property, capsules overcome shortcomings
of current solutions such as convolutional networks [15], which
can only provide local translation invariance (via max-pooling,
typically). In theory, routing can introduce invariances for any
property captured by a capsule [14].

It is hypothesized that capsule routing will perform well for
SED. One of the reasons is contemporary in that current datasets
are relatively small, which means training is prone to overfitting.
To compare with image recognition, ImageNet [16] has more
than 14 million training samples, while most environmental
sound datasets have thousands. Indeed, we demonstrate this
issue in Section IV-A for a number of architectures. By utilizing
capsules, we show that overfitting can be mitigated.

A more intrinsic rationale is that capsule routing can be
considered as an attention mechanism. The idea of attention is
to focus on the most salient parts of an input via weighting. It
has been very successful in numerous applications, including
machine translation [17], image captioning [18], and, notably,
sound event detection [11], [12]. Attention is particularly useful
for SED when training data is weakly labeled; ground truths
for the onset and offset times are not available, so the learning
algorithm must localize sound events without supervision.
Routing implements attention by weighting the association
between lower- and higher-level capsules.

In this paper, we focus on weakly-labeled event detection.
It presents a challenge that is relevant to many applications,
because collecting labeled data is often prohibitively costly.
Nevertheless, we believe the main contributions of this paper
easily apply to the strongly-labeled scenario too.

II. CAPSULE ROUTING

In general, a neural network is a function f : x→ y that is
composed of several lower-level functions fl : u → v, such
that f = fL ◦ . . . ◦ f1. Each lower-level function corresponds
to a layer in the neural network, and is typically an affine
transformation followed by a non-linearity, i.e.

s = Wu+ b, (1)

v = g(s), (2)

where W, b are learned parameters and g(·) is a differentiable,
non-linear function such as the rectifier (ReLU) [19].
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Fig. 1. A contrived illustration of the capsule routing concept. Activation
units are shown as circles and capsules are shown as the dashed lines around
them. The figure beside each capsule is the entity the capsule represents. The
capsules in layer l are shown to the left while the capsules in layer (l + 1)
are shown to the right. We see that the correctly-oriented eye associates well
with the upper face, and is indicated by the thick arrow.

A capsule network applies the same transformations, but
also introduces a routing mechanism that affects the learning
dynamics. To derive this, we rewrite (1) as

s =

 W11u1 + . . .+W1MuM

...
WN1u1 + . . .+WNMuM

 . (3)

In (3), s has been partitioned into N groups, or capsules, so that
each row in the column vector corresponds to an output capsule.
Similarly, u has been partitioned into M capsules, where ui

denotes input capsule i, and W has been partitioned into
submatrices. The bias term, b, has been omitted for simplicity.

We now introduce coupling coefficients, αij , so that

s =

 α11W11u1 + . . .+ αM1W1MuM

...
α1NWN1u1 + . . .+ αMNWNMuM

 . (4)

Fixing these coefficients to αij = 1 gives (3) and hence (1).
Instead, we would like these coefficients to represent the amount
of agreement between an input capsule and an output capsule.
A capsule encompasses a set of properties, so if the properties
of capsule i agree with the properties of capsule j in the layer
above, αij should be relatively high.

These coefficients are not learned parameters; rather, their
values are determined using an inference-time procedure called
routing. The idea is based on assigning parts to wholes. Higher-
level capsules should subsume capsules in the layer below in
terms of the entity they identify. Routing attempts to find these
associations using its notion of agreement, which causes the
capsules to learn features that enable such a mechanism to
result in correct predictions. Therefore, global coherencies can
be learned implicitly, as exemplified in Fig. 1.

A. Dynamic Routing

Until now, we have given an abstract description of routing.
In this section, we describe the method used in [14] to compute
the coupling coefficients. Noting that a capsule is a vector of
activation units, we can consider the direction of a capsule
as representing its properties. In addition, the magnitude of a
capsule can be used to indicate how likely it is to represent an

Input: Prediction vectors ûj|i, layer l, max iterations r
Output: Layer (l + 1) capsules vj

1: Initialization: βij = 0
2: for r iterations do
3: αi = softmax(βi)
4: sj =

∑
i αijûj|i

5: vj = squash(sj) . cf. (5)
6: βij = βij + vj · ûj|i
7: end for

Fig. 2. Routing algorithm. Whenever the indices i and j are encountered, it
should be assumed that it is for all i = 1 . . .M and j = 1 . . . N , respectively.

entity of interest. To ensure that the magnitude is a probability,
a squashing function is used, and is given by

vj =
‖sj‖

1 + ‖sj‖2
sj
‖sj‖

. (5)

The method used to compute the coupling coefficients is
listed in Fig. 2. It is a procedure that iteratively applies the
softmax function to log prior probabilities, βij . These logits
are initially set to βij = 0 to compute vj and then updated
based on an agreement computation aij = vj · ûj|i, where
ûj|i = Wjiui. The agreement value is a measure of how
similar the directions of capsules i and j are. The use of the
softmax function ensures that

∑
j αij = 1. Thus, αij can be

seen as the probability that the entity represented by capsule i
is a part of the entity represented by capsule j as opposed to
any other capsule in the layer above.

III. PROPOSED METHOD FOR SED

We model the SED task as being comprised of a feature
extraction stage and a detection stage. Feature extraction
refers to transforming the time-varying audio signal into a
feature vector that is appropriate for subsequent detection. The
detection stage takes the feature vector as input and attempts
to detect the sound events that occur and provide timestamps
for the start and end of each event. This latter stage is where
we introduce our neural network architecture.

A. Feature Extraction

The input feature vectors are extracted by transforming them
to produce a logarithmic Mel-frequency (logmel) representation,
which is essentially a short-time Fourier transform followed
by a Mel filterbank and a log nonlinearity. After this, each
resulting feature vector is padded to ensure that the inputs to
the neural network are of the same dimension. Finally, the
feature vectors are standardized to zero mean and unit variance.
The mean and variance parameters used to accomplish this are
computed from the training set.

The use of a logmel representation, or the closely-related
Mel-frequency cepstrum coefficients (MFCC), is standard in
the literature due to its good performance [20]. Compared
to older techniques such as Gaussian mixture models, deep
learning benefits from the additional information that logmel
retains over MFCC. For this reason, we have chosen logmel.
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Fig. 3. Diagram of the proposed neural network architecture. After the primary
capsule layer, the output is divided into time slices. These slices are transformed
by the subsequent layers to give o(t) and z(t), which are then merged.

B. Neural Network Architecture

The architecture of the neural network is shown in Fig. 3.
In contrast to the ReLU convolutional layer used in [14], the
initial layers of the network are gated convolutions [21], [12].
Experiments showed that a gated nonlinearity improves the
performance and that having several such layers is beneficial.
There are two such layers per block and three blocks in total.
After each block, max-pooling is used to halve the dimensions.
The convolutions use 128 filters (64 linear, 64 sigmoidal), a
kernel width of 3, and a stride of 1.

Following these initial layers is the primary capsule layer,
which is a ReLU convolutional layer that has been reshaped
into a T × ·1 × U tensor and squashed using (5). T is the
same temporal dimension prior to reshaping and U = 4 is the
capsule size. In other words, each capsule is a 1× 1× 4 slice
from the output. The convolution uses 64 filters and a kernel
width of 3. The stride is set to 1 for the temporal dimension
and 2 for the frequency dimension.

After this, each 1× · × 4 time slice is treated as a separate
input to the layers that follow. Indeed, the slices are given as
inputs to two adjacent layers (cf. Fig. 3): a capsule layer and
a ‘temporal attention’ (TA) layer. The capsule layer is densely

1‘·’ denotes that this dimension can be inferred from the others.

connected with U = 8 and L capsules, where L is the number
of classes (sound events). Since the previous layer is also a
capsule layer, the dynamic routing algorithm (Fig. 2) is used
to compute the output. Lastly, the Euclidean length of each
output capsule is computed. This gives a vector of activations
for each time slice t, denoted o(t) ∈ RL.

The TA layer is somewhat of a novelty that is not present in
the original capsule routing paper [14]. It is used to implement
an attention mechanism via the saliency of the time slices,
and is based on the attention scheme described in [11], [12].
The layer is densely connected with L units and a sigmoid
activation. The output is z(t) ∈ RL. We can then merge o(t)
and z(t) across t so that each prediction, yl, for class l, is
given by

yl =

∑T
t=1 ol(t)zl(t)∑T

t=1 zl(t)

= Et∼ql(t)[ol(t)],

(6)

where ql(t) = softmax(logZl) and Zl ∈ RT is the collation of
{zl(t)}t=1...T . As such, yl can be considered as the expected
length of the capsule with respect to the probability distribution
derived from the TA layer. Since ql(t) is normalized across t,
there is an implicit assumption that the sound event is present
in a single time slice only. Although this is restrictive, we
justify this choice as a practical compromise, since including
the TA layer led to better performance in our experiments. In
any case, it is important to choose an appropriate granularity
for the time slices because of this.

Choosing a probability threshold, τ1, a sound event l is
present if yl > τ1. To calculate onset and offset times, we
threshold the probabilities of ol(t) with another value, τ2,
and apply a morphological closing operation. The purpose of
closing is to reduce fragmentation and remove noise. The onset
and offset times can then be determined from the start and end
points of the resulting binary regions.

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we
used the weakly-labeled dataset provided for Task 4 of the
DCASE 2017 challenge [4]. This dataset is comprised of 17
sound event classes, of which nine are warning sounds and
eight are vehicle sounds. It is divided into a training set, a
validation set, and an evaluation set, where the former contains
51,172 audio clips. Each clip is up to ten seconds in duration,
and corresponds to one or more sound events that may overlap.

For this dataset, two tasks were evaluated: audio tagging and
sound event detection. The former is for detecting which sound
events occur in an audio clip, while the latter also requires
providing onset and offset times. For both tasks, performance
was evaluated using micro-averages of precision, recall, and
F-scores. For SED, a segment-based error rate with a one-
second time resolution was computed too. We used the sed eval
toolbox [22] for evaluation of the SED task. The reader is
referred to [22] for a description of these metrics.



TABLE I
PERFORMANCE RESULTS OF AUDIO TAGGING SUBTASK

Method F-score Precision Recall

GCCaps 58.6% 59.2% 57.9%
GCNN 57.2% 59.0% 57.2%

GCRNN 57.3% 53.6% 59.6%
EMSI 52.6% 69.7% 42.3%

TABLE II
PERFORMANCE RESULTS OF SOUND EVENT DETECTION SUBTASK

Method F-score Precision Recall Error Rate

GCCaps 46.3% 58.3% 38.4% 0.76
GCNN 37.5% 46.6% 31.1% 0.88

GCRNN 43.3% 57.9% 34.8% 0.79
EMSI 55.5% - - 0.66

A. System Setup

Prior to extracting the features, we resampled each clip to 16
KHz. The logmel features were computed using a 64 ms frame
length, 20 ms overlap, and 64 Mel-frequency bins per frame.
For a 10-second clip, this gives a 240× 64 feature vector.

To reduce overfitting, we applied batch normalization [23]
followed by dropout [24], [25] after each gated convolutional
layer as well as the primary capsule layer. The dropout rate
(fraction of units to drop) was set to 0.2 for the gated layers
and 0.5 for the primary capsule layer. For capsule routing, the
number of iterations was set to r = 3 following [14].

To train the network, we used binary cross-entropy as the
loss function and Adam [26] as the gradient descent algorithm.
The gradient was computed using mini-batch sizes of 44. The
initial learning rate was set to 0.001 and decayed by a factor of
0.9 every two epochs. We trained the network for 30 epochs,
with learned weights being saved per epoch.

The dataset used in the experiments has a large amount of
class imbalance, which can lead to bias in the classification.
To alleviate this issue, we used the data balancing technique
suggested in [12] to ensure that every mini-batch contains a
fair number of samples from each class.

During inference, the five models (epochs) that achieved the
highest accuracy on the validation set were selected and their
predictions were averaged. The detection thresholds were set
to τ1 = 0.3 and τ2 = 0.6 for our system. For SED, the dilation
and erosion sizes were set to 10 and 5, respectively. As with
the other hyperparameters, these values were determined based
on experiments on the validation set.

B. Results

In addition to our system (GCCaps)2, we also evaluated the
model proposed in [12] (GCRNN), which won 1st place in the
audio tagging subtask of Task 4. It is similar to our proposal,
with the difference being an additional gated convolutional
layer and recurrent layers [27] as opposed to capsule layers.
The same model without the recurrent layers (GCNN) is also

2Code available online: https://github.com/turab95/gccaps
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Fig. 4. Performance as a function of the number of epochs for (a) loss and
(b) accuracy. The GCCaps model has the highest accuracy and the lowest loss,
which also does not diverge as severely.

compared as an ablation study for both GCCaps and GCRNN.
Moreover, the results for [28] (EMSI) are listed too, albeit
much of the setup for that system is not the same, so it is not
a direct comparison between the architectures. It is included
because it achieved 1st place in the SED subtask.

We present our results in Table I and II for audio tagging
and sound event detection, respectively. For audio tagging, our
method performs the best overall with an F-score of 58.6%.
EMSI has the highest precision, but its recall score is much
lower, and, as a result, it has the lowest F-score. GCRNN and
GCNN perform the same in this subtask.

For SED, the recurrent layers clearly improve localization for
GCRNN, as it scores considerably higher compared to GCNN.
Meanwhile, GCCaps performs marginally better than GCRNN
with an F-score of 46.3% and an error rate of 0.76. We can
deduce that the capsule layers in GCCaps are a good substitute
for the recurrent layers in GCRNN. EMSI performs the best by
a large margin, but it should be emphasized that much of the
system is different, including the use of ensemble techniques
to utilize multiple feature vectors, which demonstrably [28]
improves its performance significantly.

To obtain greater insight, we also compared the performance
of these models (excluding EMSI) on the validation set as a
function of the number of epochs. As evident in Fig. 4, our
proposal achieved the lowest loss and highest accuracy, which
supports our earlier results. It can be seen in Fig. 4a that all of
the models eventually diverge in terms of the value of the loss
function. In Fig. 4b, it can be seen that the accuracy decreases

https://github.com/turab95/gccaps


after a number of epochs. These issues are not observed with
the training set, which suggests that the models are overfitting.
However, as shown in the figures, the extent of this problem is
greatly reduced when using capsule routing. This is reassuring,
because it indicates that the network can differentiate between
fundamental features and training-specific features.

These results demonstrate that a dynamic routing mechanism
can improve the generalization abilities of a neural network.
Although it remains to be seen, we are confident that this
applies to other datasets too. Investigating deeper layers of
capsules or different capsule networks, such as convolutional
capsule networks [29], [30], is a natural direction to take in
the future. It is also of interest to explore different routing
algorithms, such as that proposed in [29].

V. CONCLUSION

In this paper, we have proposed a neural network architecture
based on capsule routing for the detection of sound events.
The motivation was that capsules can learn to identify global
structures in the data that alternatives such as convolutional
networks cannot. Our system was evaluated on a weakly-labeled
dataset from Task 4 of the DCASE 2017 challenge. We found
that the method was considerably less prone to overfitting
compared to other architectures. For the audio tagging subtask,
we achieved a best-in-class F-score of 58.6%, while for the
event detection subtask, an F-score of 46.3% and an error rate
of 0.76. These are promising results, and suggest that capsule
routing should be further investigated.
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