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Abstract—Millimeter wave (mm-Wave) communications are
characterized by wideband channels with few directional paths,
mostly in line-of-sight. Antenna arrays are mandatory to cope
with severe path-loss, and the resulting channel response is
sparse in the space-time (ST) domain. This paper addresses the
sparsity by proposing a channel estimation method that exploits
the algebraic structure of channel and interference, without
requiring complex antenna-array calibration procedures. The
method relies on the recognition that the ST channel is low-
rank and exhibits slowly and fast-varying features (angles/delays
of arrival and fading amplitudes, respectively) and, accordingly,
that the interference has a slowly-varying spatial covariance with
fast-varying amplitudes. The accuracy of the estimation of quasi-
stationary components is increased by introducing averaging
mechanisms over multiple sequences. Numerical results show
that: i) rank-1 is an effective channel-interference representation
in mm-Wave setting with severe interference; ii) fundamental
limits (derived in closed form) prove the remarkable performance
gains in terms of signal-to interference ratio; iii) circular array
arrangement with directive elements is preferable compared to
square or triangular configurations.

Index Terms—mm-Wave, space-time channel estimation, sub-
space methods, antenna array.

I. INTRODUCTION

The ambitious throughput requirements envisioned for 5G

applications have paved the way to wireless systems operating

in the millimeter wave (mm-Wave) region [1]. The availability

of larger bandwidths (say over 100 MHz), compared to sub-

6GHz regions, comes at the price of increased attenuation and

fading (e.g., due to rain). Distributed antenna systems with

arrays of radiating elements are thus necessary to guarantee

area coverage and also for efficient management of inter-

user interference [2,3]. Remote antenna units (RAUs) can

be deployed either in massive multiple-input-multiple-output

(MIMO) configuration [4], or with smaller number of antennas

to limit the power consumption of mm-Wave hardware [5].

In both configurations, accurate knowledge of the channel

response over the space-time (ST) domain (i.e., over antennas

and delays) is key for designing precoding/decoding schemes

that fully exploit the array gain by adapting the transmission-

reception strategy to the dynamic multi-user environment

using spatial multiplexing/diversity techniques [6,7].

Conventional ST channel estimation methods fail to op-

timize the overhead versus accuracy trade-off that arises in

mm-Wave systems, mostly when employing a large number of

antennas and operating in critical signal-to-noise-ratio (SNR)

before the beamforming gain [8]. Efficient techniques for

sparse ST channels estimate a parsimonious set of parameters

that fully describes the mm-Wave channel in terms of angles

of arrival and departure, power gains and delays of few channel

paths. Compressive sensing algorithms are tailored to estimate

these few parameters, but require a calibrated array to preserve

the manifold association. Training-based beamforming and

combining vectors for hybrid analog/digital systems have been

proposed for estimating the narrowband [9] and wideband [10]

geometric parameters. On the other hand, subspace methods

rely on the evaluation of the singular vectors of the MIMO

channel [11]–[13]. These methods, however, do not adapt to

the different SNR conditions that may affect the dynamic

propagation environment, and/or do not take into account the

interference pattern when estimating the ST channel features

(or the corresponding beamforming).

In this paper, we focus on channel estimation for time-

slotted single-input-multiple-output (SIMO) mm-Wave sys-

tems, as preliminary to multi-user MIMO, and we propose

a subspace method that exploits the low-rank (LR) algebraic

structure of both user and interferer channels, as well as

the different degrees of variability of the related features.

The algebraic structure arises from the combination of slowly

(angles/delays) and fast-varying (fading amplitudes) channel

components with the slowly varying spatial covariance of the

interference. Instead of an explicit estimation of the geometric

multipath parameters (sensitive to array calibration errors), we

consider a non-parametric approach that searches for the most

parsimonious ST subspace describing the SIMO channel [14].

Since the mm-Wave channel has a LR structure, the slowly-

varying features are obtained through the estimation of the

dominant ST channel subspaces - comprehensive of the in-

terference - from the observation of several consecutive slots,

while the fast-varying Rice-faded amplitudes are tracked on

a slot-by-slot basis. To assess the performance, we derive

fundamental limits to the mean square error (MSE) of the

channel estimate for unknown ST rank orders. With respect

to [14], here the method is specifically tailored to mm-Wave

systems with different antenna array configurations (circular,

square and triangular), and the analytical performance is first

derived here by taking into account the bias effect due to

the unknown rank orders. Numerical results confirm that the
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Figure 1. A mm-Wave scenario where a single user communicates with a
RAU using multiple-antennas. Presence of NI interferers in the environment.

maximum likelihood estimate (MLE) subject to LR provides

significant performance gains compared to the conventional

full-rank (FR) one and that rank-1 is an effective channel-

interference representation in mm-Wave settings with severe

interference. Numerical validations for different array config-

urations show that the circular array is preferable when the

antenna element is directive.

II. SIGNAL MODEL

We consider a time-slotted wireless communication system

where a single-antenna user (U) transmits data to a RAU

equipped with M antennas. The mm-Wave scenario includes

also the presence of several interferers as shown in Fig. 1. Let

Y(�) ∈ C
M×N be the matrix gathering the N samples (at

symbol rate) of the signal received within the �th training slot

(� = 1, . . . , L) by the M antennas. The baseband equivalent

signal model can be written as:

Y(�) = H(�)X+N(�), (1)

where H(�) ∈ C
M×W is the block-fading frequency-selective

SIMO channel with temporal support length W within the

�th slot and X ∈ C
W×N is the convolution matrix of the

channel with the training sequence of length N . Moreover,

the co-channel interference and the background noise are

modeled as an additive zero-mean Gaussian process N(�) =
[n(1, �) · · ·n(N, �)] ∈ C

M×N , that is assumed to be tempo-

rally uncorrelated but spatially correlated (due to geometrical

arrangement of interferers) with unknown spatial covariance

Q, i.e., E[n(n, �)nH(n − k, �)] = Qδ(k), with [Q]m,m = σ2

being the noise power at each antenna.

The sparse multipath structure of the ST mm-Wave channel

is modeled as a combination of P paths:

H(�) =
∑P

p=1
αp(�)a(θp)g

T(τp) = AD(�)GT, (2)

where αp(�) is the slot-dependent fading amplitude of path p,

while τp and θp are the related delay and angle of arrival that

are typically invariant for a large number of slots and can be

considered as slot-independent over the L slots [14]. Moreover,

a(θp) ∈ C
M×1 denotes the response of the antenna array

receiver, while the vector g(τp) ∈ R
W×1 collects the samples

of the delayed waveform g(τ) representing the convolution of

the transmitted pulse with the matched filter at the receiver.

A compact form of the channel matrix is shown in the third

term in (2), where the multipath parameters are gathered into

spatial A= [a(θ1) · · ·a(θP )], temporal G= [g(τ1) · · ·g(τP )]
and diagonal D(�)=diag(α1(�) · · ·αP (�)) matrices.

In order to avoid a joint estimation of angles and delays,

which is highly complex and sensitive to antenna calibration

errors, we propose to model the ST channel (2) in terms of

unstructured slowly/fast varying matrices, by following the

approach in [14]. Let rS = rank[A] ≤ min(P,M) and

rT = rank[G] ≤min(P,W ) be respectively the spatial and

temporal diversity orders or, equivalently, the numbers of

resolvable angles and delays (given the array aperture and the

signal bandwidth). Using the above LR constraints, we rewrite

the channel (2) as the combination of three full-rank matrices:

H(�) = USΓ(�)U
H
T, (3)

where Γ(�) (rS× rT) is a fast-fading (slot-dependent) matrix,

while the spatial US (M × rS) and temporal UT (W × rT)
slow-fading (slot-independent) matrices collect the eigenvec-

tors of the spatial and temporal correlations for the channel

matrix H(�), respectively defined as RS = E[H(�)HH(�)] and

RT = E[HH(�)H(�)].

III. LOW-RANK CHANNEL ESTIMATION

In this section, we present the LR method for the MLE

of the channel matrices {H(�)}L�=1 and the noise covariance

Q from the received signals {Y(�)}L�=1, under the LR con-

straint (3) and for known rank orders (rS, rT) (Sec. III-A).

We then derive a closed form expression for the asymptotic

performance of the LR method for unknown rank orders, using

as values r̂S, r̂T for the LR estimation (Sec. III-B).

A. Low-Rank MLE Method

The conventional FR (or unconstrained) MLE of the channel

H(�) and the noise covariance matrix Q is given as:

Ĥu(�) = Ryx(�)R
−1
xx , (4)

Q̂u =
1

NL

∑L

�=1
(Ryy(�)−Ryx(�)R

−1
xxRxy(�)), (5)

where Ryx(�) = Y(�)XH, Rxx = XXH and Ryy(�) =
Y(�)YH(�) are the sample correlation matrices (Rxx is as-

sumed to be positive definite).

The LR MLE under the constraint (3), for rank orders

(rS, rT), is obtained as a post-processing of the FR MLE as:

ĤLR(�) = Q̂
H
2
u
ˆ̃HLR(�)R

−H
2

xx , (6)

where
ˆ̃HLR(�) =

ˆ̃PS,rSH̃u(�)
ˆ̃PT,rT denotes the whitened LR

channel estimate and H̃u(�) the whitened FR one

H̃u(�) = Q̂
−H

2
u Ĥu(�)R

H
2
xx. (7)

Moreover,
ˆ̃PS,rS = ˆ̃US,rS

ˆ̃UH
S,rS

is the projector onto the

subspace spanned by the rS leading eigenvectors
ˆ̃US,rS of

the spatial correlation matrix
ˆ̃RS(L). Similarly,

ˆ̃PT,rT =
ˆ̃UT,rT

ˆ̃UH
T,rT

is the projector onto the subspace spanned by
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the rT leading eigenvectors
ˆ̃UT,rT of the temporal correlation

matrix
ˆ̃RT(L). The two correlation matrices are given by:

ˆ̃RS(L) =
1

L

∑L

�=1
H̃u(�)H̃

H
u (�), (8)

ˆ̃RT(L) =
1

L

∑L

�=1
H̃H

u (�)H̃u(�). (9)

Since the spatial and temporal bases are estimated by averag-

ing the signals over L time slots, the accuracy is expected to

increase with L when the fading is uncorrelated. Notice that

the LR method (6) incorporates the interference covariance

into the ST channel estimate, thus taking into account possible

directional interference when computing
ˆ̃HLR(�), with

ˆ̃PS,rS

and
ˆ̃PT,rT acting as spatial and temporal filters.

The LR estimate of the noise covariance matrix

Q̂(L) =
1

NL

∑L

�=1
N̂(�)N̂(�)H, (10)

is obtained from the residuals of the channel estimation

N̂(�) = Y(�)− Ĥ(�)X.

B. Performance Analysis for Unknown Rank Orders

A closed form expression for the MSE of the LR channel

estimate is derived here as MSELR = E[||�H(�)||2], with

�H(�) = ĤLR(�) − H(�) and where ||A||2 = tr[AAH]
denotes the Frobenius norm of matrix A. The impact of

a possible mismatch between the rank orders used in the

estimation (r̂S, r̂T) and the true channel rank orders (rS, rT)
is taken into account to comply with practical mm-Wave

scenarios where the rank orders are unknown and need to

be selected so as to minimize the MSE of the estimate. The

choice r̂S = rS and r̂T = rT is the minimum order that

gives an unbiased channel estimate, but in general it does

not provide the lowest MSE. For low signal-to-interference-

noise ratio (SINR), that is likely to occur in mm-Wave systems

with transmit/receive misalignments or high path-loss, it might

be more convenient to choose a biased estimator with lower

rank (i.e., r̂S < rS or r̂T < rT) to trade distortion (due to

under-parameterization) for estimate error. To highlight this,

we derive the LR performance for any rank-order selection

with 1 ≤ r̂S ≤ M and 1 ≤ r̂T ≤ W . The performance, here

referred to as asymptotic MSE bound, is computed analytically

assuming that the training sequence is very long (say N → ∞)

and the number of slots is L → ∞. The asymptotic MSE

bound will be used in the following sections to analyze the

impact of rank-order selection on the performance of mm-

Wave systems. Note that for N,L → ∞ the noise covariance

Q can be considered as known (as Q̂(L) → Q) and the esti-

mated ST projectors equal to the projectors onto the subspaces

spanned by the whitened channel H̃(�) = Q−H
2 H(�)R

H
2
xx, i.e.,

ˆ̃PS,rS → P̃S,rS = ŨSŨ
H
S and

ˆ̃PT,rT → P̃T,rT = ŨTŨ
H
T,

with ŨS = Q−H
2 US and ŨT = R

1
2
xxUT.

According to (6), the LR estimate error is �H(�) =

Q
H
2 �H̃(�)R

−H
2

xx , where ΔH̃(�) = ˆ̃HLR(�)−H̃(�) denotes the

LR estimate error in the whitened domain and the whitened

multipath channel is H̃(�) =
∑

p αp(�)ã(θp)g̃
T(τp), with ã =

Q−H/2a and g̃ = (R
1/2
xx g)∗. From (1), (6) and (7), after some

algebraic manipulations, it can be shown that the whitened LR

error based on rank orders (r̂S, r̂T ) is the sum of two terms,

one accounting for the distortion due to rank mismatch (i.e.,

for r̂S < rS or r̂T < rT) and the other for the noise:

ΔH̃(�) = P̃S,r̂SH̃(�)P̃T,r̂T − H̃(�)︸ ︷︷ ︸
ΔH̃d(�)

+ P̃S,r̂SΔH̃u(�)P̃T,r̂T︸ ︷︷ ︸
ΔH̃n(�)

,

(11)

where ΔH̃u(�) = H̃u(�)−H̃(�) is the whitened FR error. Af-

ter some manipulation, the distortion term can be rewritten as

ΔH̃d(�) = ΔP̃SH̃(�)ΔP̃T −ΔP̃SH̃(�)− H̃(�)ΔP̃T, where

ΔP̃S = P̃S,rS −P̃S,r̂S and ΔP̃T = P̃T,rT −P̃T,r̂T denote the

differences between the true projectors (P̃S,rS , P̃T,rT ) and the

projectors onto the spatial-temporal subspaces of the channel

(3) selected using the dimensions r̂S and r̂T (P̃S,r̂S , P̃T,r̂T ).

Since the two terms in (11) are uncorrelated, we get that

the MSE is the sum of the two corresponding MSE terms:

MSELR(r̂S, r̂T) = MSEd(r̂S, r̂T) + MSEn(r̂S, r̂T). (12)

The first MSE term in (12) accounts for the distortion in-

troduced by the rank reduction. It is zero for r̂S ≥ rS and

r̂T ≥ rT [14], while for under-estimated ranks it is:

MSEd(r̂S, r̂T )=

P∑
p=1

σ2
p

(
Φ(ΔP̃SR̃Sp,Q)Φ(ΔP̃TR̃Tp,R

−1
xx)

−Φ(R̃Sp,Q)Φ(ΔP̃TR̃Tp,R
−1
xx )

−Φ(ΔP̃SR̃Sp
,Q)Φ(R̃Tp

,R−1
xx )

)
,

(13)

where σ2
p = E(|αp(�)|2) is the power of the path p, R̃Sp

=

ã(θp)ã
H(θp) and R̃Tp = g̃(τp)g̃

T(τp) are the spatial and

temporal channel correlation matrices in the whitened domain

and with Φ(P,A) = tr{AH/2PA1/2}. The second MSE term

in (12) depends mainly on the interference:

MSEn(r̂S, r̂T) = Φ(P̃S,r̂S ,Q)Φ(P̃T,r̂T ,R
−1
xx ). (14)

Note that this contribution increases for increasing r̂S and r̂T,

while the distortion term MSEd decreases. An optimal trade-

off can be found by selecting the rank orders that minimize the

MSE for the specific interference arrangement defined by the

structure of the covariance Q. For r̂S = M and r̂T = W , the

MSE reduces to the performance of the unconstrained channel

estimate that is MSEu = Φ(IM ,Q)Φ(IW ,R−1
xx ).

IV. ANTENNA ARRAY CONFIGURATIONS

WITH DIRECTIVE ELEMENTS

Assuming M antenna elements, each with directivity gain

D(θ) = βcosγ(θ), where θ is the direction of arrival (DOA),

the following antenna array configurations are studied: A) The

Uniform Circular Array (UCA) is shown in Fig. 2-(a) and the

UCA vector ac(θ) ∈ C
M×1 in (2) is given by:

ac(θ) = Dc(θ) ◦ āc(θ), (15)

where Dc(θ) ∈ C
M×1 is the circular directivity vector and

āc(θ) ∈ C
M×1 is the array manifold, whose entries are
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Figure 2. Different antenna arrays configurations at RAU: (a) circular, (b)
triangular and (c) square arrangements.

respectively defined in the second and third column of the

Table I, with λ being the wavelength, d = 2πr
M the inter-

element spacing, r the array radius and m = 0, ...,M − 1.

Moreover, ◦ denotes the Hadamard (element-wise) product.

B) The Triangular Array (TA) is formed by three uniform

linear arrays (ULAs) deployed over the three sides of a triangle

(Fig. 2-(b)). The TA vector at(θ) ∈ C
M×1 is:

at(θ) = Dt(θ) ◦ āt(θ), (16)

with Dt(θ) = [Dt1(θ)Dt2(θ)Dt3(θ)]
T ⊗ 1M/3 ∈ C

M×1

accounting for the three ULAs arrangement, with elements

defined in the second column of Table I, with 1m being the

vector with all entries equal to 1. The array vector is āt(θ) =
[āTt1(θ) ā

T
t2(θ) ā

T
t3(θ)]

T, where the entry m of each āti(θ) ∈
C

M
3 ×1, with i= 1, . . . , 3, is in the third column of Table I,

with κ= 2π
λ being the wavenumber and m=0, ...,M/3−1.

C) The Square Array (SA) is formed by four ULAs deployed

over the four sides of a square (Fig. 2-(c)). The SA vector

as(θ) ∈ C
M×1 is:

as(θ) = Ds(θ) ◦ ās(θ), (17)

with Ds(θ)=[Ds1(θ)Ds2(θ)Ds3(θ)Ds4(θ)]
T⊗1M/4∈C

M×1

based on the four ULAs arrangement, with directive elements

given in the second column of Table I. The array manifold is

ās(θ) = [āTs1(θ), ā
T
s2(θ), ā

T
s3(θ), ā

T
s4(θ)]

T, where the mth ele-

ment of each āsi(θ) ∈ C
M/4×1, with i = 1, . . . , 4, is defined

in the third column of Table I, with m = 0, ...,M/4− 1.

V. NUMERICAL ANALYSIS

Performance of the proposed LR method is evaluated for

varying rank orders and antenna array configurations, com-

pared to the FR MLE. ST channel estimation is the first step

in spatial precoding/decoding and temporal equalization, but

the impact of the LR estimation onto spatial filtering capability,

or any other processing, is outside the scope of the paper.

The mm-Wave uplink system operates with symbol rate

Rs = 400 MHz and carrier frequency 28 GHz. The distance

between the user and the RAU is set to RU = 50m. The RAU

is equipped with M = 48 antennas with half-wavelength inter-

element spacing and directivity parameters set to β = 1.8 and

γ = 1.6. The ST channel consists of P = 3 paths, setting the

sparsity degree and the rank orders, as exemplified in Fig. 3.

The path amplitudes αp(�), p = 1, 2, 3, are independent and

identically distributed, with LOS-dominant Rician distribution,

Table I
ANTENNA ARRAY PARAMETERS.

Shape Directivity D(θ) Array Manifold ā(θ)

© Dcm (θ)=D(θ− 2π
M

m) ācm(θ)=ej
dM
λ

(1−cos(θ= 2π
M

m))

�
Dt1 (θ)=D(−π

2
− θ) āt1m(θ)=ejκdm cos(θ)

Dt2 (θ)=D( 5π
6

− θ) āt2m(θ)=ejκd[(
M
3

−1) cos(θ)−m cos(π
3
−θ)]

Dt3 (θ)=D(π
6
− θ) āt3m(θ)=ejκdm cos(θ+π

3
)

�
Ds1 (θ)=D(−π

2
− θ) ās1m(θ)=ejκdm cos(θ)

Ds2 (θ)=D(π − θ) ās2m(θ)=ejκd[(
M
4

−1) cos(θ)−m sin(θ)]

Ds3 (θ)=D(π
2
− θ) ās3m(θ)=ejκd[−(M

4
−1) sin(θ)+m cos(θ)]

Ds4 (θ)=D(θ) ās4m(θ)=ejκd(−m sin(θ))

[dB]

FR

-35 -30 -25 -20 -15 -10 -5 0 5 1010-3

10-2

10-1

100

101

102

103 LR
LR
LR
Asymptotic bound

Figure 3. Normalized MSE vs omni-directional SIR ρ for the FR and LR
methods with r̂S = r̂T = {1, 2, 3} for UCA arrangement at RAU and
SNR = 45dB. Subfigure: Example of ST propagation channel.

|αp(�)| ∼ Rice(σ2
p,K), with mean power σ2

p = P̄r/3 and

K-factor K = 10dB according to the vertical-vertical (VV)

antenna polarization model as typical mm-Wave small-scale

fading [15]. P̄r is the total received power computed assuming

transmission power 20dBm and free-space path-loss. The

angles of arrival of paths p = 2, 3 are uniformly distributed

within an angular spread Δθ = π/10 rad around the DOA

of the first path θ1. The delay of the first path is τ1 = RU/c,
being c the vacuum velocity of light, while the delays of paths

p = 2, 3 are in the range [τ1, τm], with τm = 1.2τ1 = 0.2μs

computed based on the maximum angular spread Δθ, with

an overall delay spread of δτ = τm − τ1 = 33.33ns. The

pulse shaping g(t) is a raised cosine with roll-off 0.2 and the

temporal channel support is set to W = 40 > Rsδτ . Moreover,

the training sequence with N = 2W quadrature phase shift

keying (QPSK) symbols is simulated as a random sequence

such that E[XXH] = Nσ2
xIW . The mm-Wave scenario in-

cludes NI = 100 interferers, operating at the same carrier

frequency of the user and uniformly surrounding the RAU (as

in Fig. 1), with DoAs θIk ∼ U(0, 2π), with k = 1, . . . , NI ,

and amplitudes modeled as Gaussian with covariance matrix

QI =
σ2
I

NI

∑NI

k=1 a(θIk)a
H(θIk). The spatial covariance matrix

is Q = QI + QN, with QN = σ2
NIM accounting for

background noise. The signal-to-interference ratio (SIR) is

defined as SIR = σ2
xE[||H(�)||2]/(Mσ2

I ) and the SNR as
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Figure 4. MSE angular analysis versus user direction θU = [0, 2π] for the LR method with r̂S = {1, 3} and r̂T = {1, 3} for circular (green), triangular
(blue) and square (red) arrays and for ρ = −25dB (left) and ρ = 0dB (right) and SNR = 45dB.

SNR = σ2
xE[||H(�)||2]/(Mσ2

N). Moreover, we define the SIR

for omni-directional antennas at RAU as ρ = (RI/RU)
2, with

RI being the distance between one interferer and the RAU.

This omni-directional SIR sets the geometrical parameters of

the users/interferers deployment that purposely depends only

on the relative mutual distances RI/RU. Note that for NI

interferes, the experienced SIR for all interferers is ρ/NI .
Fig. 3 shows the average performance of the proposed

LR method and of the conventional FR solution, evaluated

in terms of normalized MSE = E[||ΔH(�)||2]/E[||H(�)||2]
for varying omni-directional SIR ρ. Numerical averages are

over 200 independent realizations of user-interferers random

arrangements. The LR method is performed using r̂S = r̂T =
{1, 2, 3} for UCA arrangement. Numerical results show that

the performance of the LR estimator (markers) outperforms the

FR MLE (dashed line) and closely attains the LR bound (solid

line) evaluated as in (12). Moreover, for severe SIR conditions

(ρ < −10dB) rank-1 provides the best performance.
The angular analysis of the MSE bound versus the direction

of the user θU = [0, 2π] is shown in Fig. 4 for different

antenna arrays (circular, square and triangular shapes), for

ρ = {−25, 0}dB. The MSE is in radial-units and confirms that

for very-low SIR (left in Fig. 4) a rank-1 estimate (r̂S = 1 and

r̂T = 1) is beneficial compared to a rank-3 estimate (r̂S = 3
and r̂T = 3). On the other hand, when SIR is higher (right in

Fig. 4), a rank-3 estimate is mandatory to attain the minimum

MSE. When ρ = −25dB (left in Fig. 4) the performance

degradation of the MSE for rank-1 is about 6dB compared to

the ρ = 0dB case (right in Fig. 4), supporting rank-1 channel

estimation in sparse mm-Wave propagation settings.

VI. CONCLUSIONS

In this paper, we investigated the feasibility of using the

algebraic structure of sparse mm-Wave links to improve the

performance of ST channel-interference estimation, for an

uncalibrated array of antennas. Performance results show that

the proposed LR method outperforms the conventional FR

method. Moreover, even if true-rank is unknown, the rank-1

estimate is the preferred solution as it trades (mild) complexity

with capability to operate in low SIR conditions. Numerical

analysis shows that circular array is the preferable arrangement

compared to the triangular and the square configurations.

REFERENCES

[1] T. S. Rappaport et al., “Millimeter Wave Mobile Communications for
5G Cellular: It Will Work!” IEEE Access, vol. 1, pp. 335–349, 2013.

[2] M. Z. Win et al., “A mathematical theory of network interference and
its applications,” Proc. of the IEEE, vol. 97, no. 2, pp. 205–230, Feb.
2009.

[3] A. Conti et al., “Log-concavity property of the error probability with
application to local bounds for wireless communications,” IEEE Trans.
on Information Theory, vol. 55, no. 6, pp. 2766–2775, Jun. 2009.

[4] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Proc. Mag., vol. 30, no. 1, pp. 40–60,
2013.

[5] S. Han et al., “Large-scale antenna systems with hybrid analog and
digital beamforming for millimeter wave 5G,” IEEE Commun. Mag.,
vol. 53, no. 1, pp. 186–194, 2015.

[6] O. E. Ayach et al., “Spatially sparse precoding in millimeter wave
MIMO systems,” IEEE Trans. on Wireless Commun., vol. 13, no. 3,
pp. 1499–1513, Mar. 2014.

[7] J. Gambini, “Precoding design with emission levels control for mmwave
hybrid two-stage architectures,” in IEEE ISWCS, Aug. 2017, pp. 152–
157.

[8] R. W. Heath et al., “An overview of signal processing techniques for
millimeter wave MIMO systems,” IEEE J. of Sel. Topics in Signal Proc.,
vol. 10, no. 3, pp. 436–453, 2016.

[9] S. Sun and T. S. Rappaport, “Millimeter Wave MIMO channel estimation
based on adaptive compressed sensing,” in IEEE ICC Workshops, May
2017, pp. 47–53.

[10] Z. Gao et al., “Channel estimation for millimeter-wave massive MIMO
with hybrid precoding over frequency-selective fading channels,” IEEE
Commun. Letters, vol. 20, no. 6, pp. 1259–1262, Jun. 2016.

[11] H. Ghauch et al., “Subspace estimation and decomposition for large
millimeter-wave MIMO systems,” IEEE J. of Sel. Topics in Signal Proc.,
vol. 10, no. 3, pp. 528–542, 2016.

[12] S. Haghighatshoar and G. Caire, “Massive mimo channel subspace
estimation from low-dimensional projections,” IEEE Trans. on Signal
Proc., vol. 65, no. 2, pp. 303–318, Jan. 2017.

[13] S. Buzzi and C. D’Andrea, “Subspace tracking algorithms for millimeter
wave mimo channel estimation with hybrid beamforming,” in 21th
International ITG WSA, Mar. 2017, pp. 1–6.

[14] M. Nicoli et al., “Multislot estimation of fast-varying space-time com-
munication channels,” IEEE Trans. on Signal Proc., vol. 51, no. 5, pp.
1184–1195, 2003.

[15] M. K. Samimi et al., “28 GHz millimeter-wave ultrawideband small-
scale fading models in wireless channels,” in IEEE 83rd VTC Spring,
2016, pp. 1–6.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 931


