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Abstract— Unsupervised representation learning shows high
promise for generating robust features for acoustic scene
analysis. In this regard, we propose and investigate a novel com-
bination of features learnt using both a deep convolutional gen-
erative adversarial network (DCGAN) and a recurrent sequence
to sequence autoencoder (S2SAE). Each of the representation
learning algorithms is trained individually on spectral features
extracted from audio instances. The learnt representations are:
(i) the activations of the discriminator in case of the DCGAN,
and (ii) the activations of a fully connected layer between
the decoder and encoder units in case of the S2SAE. We
then train two multilayer perceptron neural networks on the
DCGAN and S2SAE feature vectors to predict the class labels.
The individual predicted labels are combined in a weighted
decision-level fusion to achieve the final prediction. The system
is evaluated on the development partition of the acoustic scene
classification data set of the IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events (DCASE 2017).
In comparison to the baseline, the accuracy is increased from
74.8 % to 86.4 % using only the DCGAN, to 88.5 % on the
development set using only the S2SAE, and to 91.1 % after
fusion of the individual predictions.

Index Terms— unsupervised feature learning, generative ad-
versarial networks, sequence to sequence autoencoders, acoustic
scene classification

I. INTRODUCTION

The choice of data representation heavily influences the per-
formance of machine learning algorithms, hence determining
what constitutes an adequate representation is a key research
topic [1]. To date, audio processing tasks, including acoustic
scene classification have been dominated by ‘hand-crafted’
features, for instance Mel-Frequency Cepstral Coefficients [2],
[3]. However, recently, unsupervised representation learning,
in particular deep representation learning, has started to attract
increasing research attention [4]—[8]. Such approaches are
desirable, as they are theoretically capable of learning more ab-
stract, thus robust representations than shallow approaches [1].
Further, they enable machines to automatically learn the
discriminative characteristics, without label information, thus
eliminating the associated manual efforts with these tasks.
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Unsupervised representation learning for computer audition
tasks is not a novel concept; approaches such as sparse feature
learning [9] and bag-of-audio-words [10], have been proposed
in the literature and developed. The increasing presence of
deep unsupervised representation learning approaches for
computer audition tasks can be highlighted by the recent
Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges [11], [12]. While most entrants to
the 2016 and 2017 challenges were based on conventional
audio feature representations, there has been an increase in
the presence of entries using deep unsupervised methods,
especially when compared to the original 2013 challenge [3].

In particular, approaches based on Convolutional Neural
Networks (CNNs) [13], Restricted Boltzmann Machines
(RBMs) [14], Deep Non-negative Matrix Factorisation
(DNMF) [15], and Recurrent Neural Networks (RNNs) [8]
have shown promise for the task of acoustic scene classi-
fication. However, while the aforementioned systems were
highly competitive in their respective challenges, the reality
that such systems did not consistently outperform approaches
based on conventional audio features, shows there are still
improvements to be made in terms of generating more
meaningful and task salient feature representations.

Deep unsupervised representation learning paradigms are
arguably more established within the field of image process-
ing [1]. The use of CNN architectures such as ResNet [16],
AlexNet [17], and VGGI9 [18] is now considered as an
established feature extractor for image tasks, including
object or scene recognition [19], [20]. Moreover, these pre-
trained CNNs have also been successfully applied in audio
recognition tasks [21]-[24]. A more recent development in
image processing, yet to be fully utilised in computer audition,
has been the advent of Generative Adversarial Networks
(GANS) [25]. GAN:S, in particular, Deep Convolutional GANSs
(DCGANS) have shown state-of-the-art performance in image
classification tasks [26].

GANSs have also shown promising results in a small number
of computer audition tasks, including automatic speech recog-
nition [27] and computational paralinguistics [28]. However,
to the best of the authors’ knowledge, the work presented
herein is the first time this technique has been proposed for the
task of acoustic scene classification. We present an approach
which fuses representations learnt from Mel-spectrograms of
audio files using both a DCGAN and a recurrent sequence
to sequence autoencoder (S2SAE), extracted with the state-
of-the-art AUDEEP toolkit [5].



The rest of this contribution is organised as follows. Sec-
tion II introduces the acoustic scene database. Section III
outlines our deep learning methods for unsupervised represen-
tation learning from the audio files. The experimental settings
and results are outlined in Section IV, before concluding the
paper in Section V.

II. ACOUSTIC SCENE DATA SET

The DCASE 2017 acoustic scene classification challenge
was carried out on the TUT Acoustic Scenes 2017 data
set [12]. This data set contains binaural audio samples of
15 acoustic scenes recorded at distinct geographic locations.
For each location, between 3 and 5 minutes of audio were
initially recorded and then split into 10 second chunks. The
development set for the challenge contains 4 680 instances,
with 312 instances per class, and the evaluation set contains
1 620 instances. A four-fold cross-validation setup is provided
by the challenge organisers for the development set. In each
fold, about 75 % of the samples are used as the training split,
and the remaining samples are used as the evaluation split.
Samples from the same original recording are always included
in the same split. Our study is conducted on the development
set only, there is a notable mismatch in recording conditions
between the partitions which causes observable confounding
effects. This is evidenced by the lack of relationship between
the development and evaluation scores in the 2017 challenge'.
For further details on the challenge data and the cross fold
validation setup, the interested reader is referred to [12].

III. SYSTEM ARCHITECTURE

Our approach is composed of two components for unsuper-
vised feature learning: 1) a deep convolutional generative ad-
versarial networks (DCGAN), and 2) a sequence to sequence
autoencoder (S2SAE). First, we extract the activations of
the discriminator for the DCGAN and the activations of a
fully connected layer between the decoder and encoder units
of the S2SAE. As depicted in Figure 1, separate classifiers
are trained on the individual feature sets (8 in total), and
the resulting prediction probabilities are fused. Fusion is
done in two stages: first, the results on DCGAN-features and
S2SAE-features are fused with separately optimised weights,
and subsequently, the resulting prediction probabilities (one
for DCGAN and one for S2SAE) are fused with optimised
weights (cf. Section IV-C).

A. Spectrogram Generation

To create the power spectra of the acoustic data, we apply
periodic Hann windows with length / and overlap 0.5/. From
these, we then compute a given number N, of log-scaled
Mel-frequency bands; Mel-spectra features have previously
been shown to be useful for the task of acoustic scene
classification [8]. We also normalise the Mel-spectra values
in [—1;1], as the outputs of the S2SAE are constrained
to this interval. The acoustic scene corpus contains audio
samples which have been recorded in stereo [12]. Following

"http://www.cs.tut.fi/sgn/arg/dcase2017/
challenge/task—acoustic-scene-classification-results
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Fig. 1: Illustration of the decision-level fusion system of
multiple learnt representation vectors for the audio recordings.
We first compute the predictions and confidence scores indi-
vidually on each representation. Subsequently, the decisions
are weighted regarding to predetermined weights and fused
to obtain the final classification results.

the winners of the DCASE 2016 acoustic scene classification
challenge [29], we thus extract Mel-spectrograms from each
individual channel, as well as from the mean and difference
of the two channels. Features are then learnt independently
on the Mel-spectrograms, and we investigate decision-level
fusion of these representations.

B. Deep Convolutional Generative Adversarial Network

In a GAN, the generative model, or generator, is set to
compete against a discriminative model, or discriminator,
in an adversarial setting. The discriminator is trained to
distinguish accurately whether a given sample has been
produced by the generator or drawn from the data distribution.
At the same time, the objective of the generator is to fool
the discriminator into misclassifying the generated samples
as real samples. These competing training objectives force
both models to continuously improve their methods until the
distribution learnt by the generator closely matches the real
data distribution [25].

DCGANs are GANs that use CNNs in the generator
and discriminator. They have been shown to learn strong
representations, which achieve state-of-the-art classification
accuracy on image classification tasks [26]. DCGANs can
be applied for representation learning from acoustic data by
training them on the visual representation of the input audio
data, e. g. (Mel-)spectrograms.

Based on the results reported by Radford etal. [26], the
following DCGAN architecture is selected for the purposes of
this paper (cf. Figure 2). Both the generator and the discrimina-
tor contain the same number N,gngAN of convolutional layers,
with a fixed stride of two. The output layer of the generator
and the input layer of the discriminator have the spatial
dimensions of the spectrograms that should be processed.
The convolutional layer connected to the output layer of the
generator and the input layer of the discriminator contains
N,QHCgAN feature maps. In each additional layer on top of this
layer in the discriminator, or below this layer in the generator,
the number of feature maps is doubled and the spatial
dimensions are reduced by half. Finally, 100-dimensional
Gaussian noise is used as input to the generator, where it is
projected and reshaped to the dimensionality required by the
first convolutional layer. As suggested by Radford etal., the
feature maps have kernels with size 5 x 5 [26]. An example
spectrogram generated by the DCGAN is shown in Figure 3.
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Fig. 3: An example of the spectrogram generated by a
DCGAN on the acoustic scene corpus. The DCGAN has
learnt to generate spectrograms that are qualitatively very
similar to real training examples. The power spectral density
in the generated spectrogram is within the range [—1;1], and
no mapping onto the Decibel scale is given. For this reason,
no such scale is displayed in the plot.

C. Recurrent Sequence to Sequence Autoencoders

We use a similar implementation for the S2SAE as given
in [5], [8]. First, Mel-spectrograms are extracted from the
raw acoustic data. Subsequently, an autoencoder is trained on
these spectra, which are viewed as time-dependent sequences
of frequency vectors. After autoencoder training, the learnt
representations of the Mel-spectrograms are then generated
for use as feature vectors for the corresponding instances.
Mel-spectra are considered as time-dependent sequences
of frequency vectors in [—1; I}N'"f/ , each of which describes
the amplitudes of the N, Mel-frequency bands within one
audio segment. This sequence is fed to a multilayered encoder
RNN that updates its hidden state in each time step based on
the input frequency vector. Therefore, the final hidden state
of the encoder RNN contains information about the whole
input sequence. This final hidden state is transformed using
a fully connected layer, and another multilayered decoder
RNN is used to reconstruct the original input sequence from
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Number of convolutional layers in the generator and discriminator CNNss;

N,LzanAN : Number of feature

of the discriminator.

the transformed representation. For full details, the interested
reader is referred to [8].

The encoder RNN consists of N4y, layers, each containing
Nunir Gated Recurrent Units (GRUs). During training, we use
the root mean square error (RMSE) between the decoder
output and the target sequence as the objective function. To
cope with overfitting, i.e. fitting the training model to the
noise instead of the underlying signal, we apply dropout [30]
to the inputs and outputs of the recurrent layers, but not to
the hidden states. After the training process, the activations
of the fully connected layer are extracted as the learnt
representations of spectrograms.

D. Classifier

A multilayer perceptron (MLP), similar to the one applied in
the baseline system [12], is employed for classification. Our
MLP has two hidden fully connected layers with rectified
linear activation, and a softmax output layer. Each hidden
layer contains 150 units, and the output layer has one unit
for each class label (15 units total). Training is performed
using cross entropy between the ground truth and the network
output as the objective function, with dropout applied to all
layers except the output layer.

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Common Experimental Settings

We have implemented both representation learning ap-
proaches [8], [26] outlined above as part of the AUDEEP
toolkit> for deep representation learning from audio [5].
AUDEEP is implemented in Python, and relies on TENSOR-
FLOW? for the core DCGAN and S2SAE implementations.
All neural networks, i.e. the S2SAEs, DCGANs, and MLPs,
are trained using the Adam optimiser. Autoencoders are

2https://github.com/auDeep/auDeep/
3https://www.tensorflow.org/



trained for 50 epochs in batches of 64 samples with a fixed
learning rate of 0.001, and we apply 20 % dropout to the
outputs of each recurrent layer. Furthermore, we clip gradients
with absolute value above 2 [31]. The DCGANSs are trained
for 10 epochs in batches of 32 examples, and a fixed learning
rate of 0.0002 and momentum f; = 0.5 is used. The MLPs
used for classification are trained for 400 epochs without
batching or gradient clipping, and 40 % dropout is applied to
the hidden layers.

B. Hyperparameter Selection

Our deep feature learning systems contain a wide range
of adjustable hyperparameters that prohibits an exhaustive
analysis of the parameter space. For our experiments, we use
similar DCGAN and S2SAE hyperparameters as those applied
in [26] and [8] (cf. Section IV-B.1 and Section IV-B.2).

1) DCGAN: For DCGAN, previous work is consulted
extensively to guide parameter selection [26]. The DCGAN
architecture is selected based on the results reported by
Radford et al. [26], who use NPCGAN — 4 and NPCGAN — 4. A

layer maps

slightly less complex DCGAN architecture with ngfg“w =3
and NPCOAN — 33 i ysed in this paper.

maps

2) SZ.I;‘AE: For S2SAE, we select the following parameters
according to [8]: LSTM cells with N4y, = 2 layers and
Nynir = 256 units; a unidirectional encoder RNN, and a
bidirectional decoder RNN; Mel-spectrograms extracted with
the window length / = 0.20 seconds, the window overlap
0.57=0.10 seconds, and N,,,; = 320 Mel-frequency bands.

C. Fusion Experiments

We extract four sets of spectrograms from the mean and
difference of channels, and from the left and right channels
individually (cf. Section III-A). On each set of spectrograms,
a DCGAN and a S2SAE are trained, and the learnt repre-
sentations are extracted as features for the audio instances.
This results in four feature sets for each approach herein
identified by the spectrogram type from which they have been
extracted (i.e. ‘mean’, ‘difference’, ‘left’, and ‘right’). The
‘right’ feature set (84.5 %) for the DCGAN and the ‘mean’
feature set (86.0 %) for the S2SAE achieved the highest
individual classification accuracy (cf. Table I).

For each of the 8 individual feature sets (4 for DCGAN
and 4 for S2SAE) we train a classifier and fuse the resulting
prediction probabilities in two steps. First, we fuse the results
on DCGAN-features and S2SAE-features and with separately
optimised weights. We then fuse the resulting prediction
probabilities (one for DCGAN and one for S2SAE) with
optimised weights. In order to determine optimal weights for n
representations, all combinations of weights wy,...,w, € [0,1]
with I, w; = 1 are sampled in steps of 0.1, and the weights
that yield the highest classification accuracy are selected.

In the first fusion step, we achieve 86.4 % accuracy on the
fused DCGAN predictions, and 88.5 % on the fused S2SAE
results (cf. Table I). In the final step, we obtain the highest
classification accuracy of 91.1 % on the fused prediction
probabilities of DCGAN and S2SAE.
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TABLE I: Comparison of the classification accuracies of our
proposed systems with the challenge baseline. We extract four
different feature sets of spectrograms from the mean (M) and
difference (D) of channels, and from the left (L) and right
(R) channels separately. We obtain the highest accuracy after
fusing the prediction probabilities of S2SAE and DCGAN.
CV: Cross Validation.

System Features  CV Accuracy [%]
Baseline 200 (per frame) 74.8
Proposed: DCGAN

Mean (M) 3072 84.1
Left (L) 3072 834
Right (R) 3072 84.5
Difference (D) 3072 83.5
Fused M + L + R + D) 86.4
Proposed: S2SAE

Mean (M) 1024 86.0
Left (L) 1024 84.9
Right (R) 1024 84.0
Difference (D) 1024 82.0
Fused M + L + R + D) 88.5
Proposed: DCGAN + S2SAE 91.1

V. CONCLUSIONS AND FUTURE WORK

This work analysed the effectiveness of applying deep
unsupervised representation learning algorithms for the task
of acoustic scene classification. In this regard, we proposed a
novel combination of features generated using a DCGAN and
a S2SAE. Results presented indicate that fusing the prediction
probabilities of each classifier trained on each representation,
it is possible to improve upon the challenge baseline from
74.8 % to 91.1 %, representing a relative percentage increase
of 21.8 %. This result indicate the two techniques complement
each other in the task of acoustic scene recognition.

Despite CNNs which typically require inputs of fixed
dimensionality the proposed S2SAE is able to learn a fixed
length representation from variable length audio signals while
considering their time-dependent nature. Further, we gave
evidence that adversarial networks learn strong representations
from spectral features. The applied DCGAN is able to
generate spectral images which are highly similar to real
training examples. This finding can help in extending the
DCGAN framework for other audio related tasks, such as
speech synthesis. Both S2SAE and DCGAN are unsupervised
representation learning approaches and can be applied for
big data, and are less susceptible to overfitting. In future
work, we will be testing our system over a wide range of
different acoustic classification tasks. We also want to explore
the benefits of collecting further data from social multimedia
using our purpose built software [32] to train the DCGAN
and S2SAE with more real-world audio recordings.
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