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Abstract—Polyphonic music transcription is a challenging
problem, requiring the identification of a collection of latent
pitches which can explain an observed music signal. Many
state-of-the-art methods are based on the Non-negative Matrix
Factorization (NMF) framework, which itself can be cast as a
latent variable model. However, the basic NMF algorithm fails
to consider many important aspects of music signals such as low-
rank or hierarchical structure and temporal continuity. In this
work we propose a probabilistic model to address some of the
shortcomings of NMF. Probabilistic Latent Component Analysis
(PLCA) provides a probabilistic interpretation of NMF and has
been widely applied to problems in audio signal processing. Based
on PLCA, we propose an algorithm which represents signals
using a collection of low-rank dictionaries built from a base
pitch dictionary. This allows each dictionary to specialize to a
given chord or interval template which will be used to represent
collections of similar frames. Experiments on a standard music
transcription data set show that our method can successfully
decompose signals into a hierarchical and smooth structure,
improving the quality of the transcription.

I. INTRODUCTION

Latent variable techniques represent a diverse collection
of algorithms for analyzing signals and data. A common
assumption in many signal processing or machine learning
applications is that observed signals can be fully or partially
explained by some hidden latent factors such as class la-
bel. Algorithms for discovering these latent variables under
different assumptions include Principal Component Analysis
(PCA) [1], Gaussian Mixture Models (GMM) [2], Dictio-
nary Learning (DL) [3], Independent Component Analysis
(ICA), Latent Dirichlet Allocation (LDA) [4] and many others.
These algorithms have been applied to problems as diverse as
document clustering/topic-modelling, image denoising, speech
recognition and audio source separation.

We are interested in analyzing polyphonic music signals,
which offer many interesting challenges. For example, music
signals can be explained by many possible latent factors
including music genre, instrumentation, emotion or musical
key signature. As an added complication, many of these factors
have a hierarchical relationship – for example the key signature
of a piece informs which pitches are likely or possible.
Furthermore, music is highly temporal so that the state at
one instant informs the subsequent states. Our goal with this
work is to model these correlated and hierarchical structures.
The main application we consider is that of recognizing the

pitch content of a recorded piece of music from just the
observed signal. In doing so, we will encounter many of
the issues discussed above. In the following we state the
music transcription problem (Section II), design a general
technique for music analysis (Sections III & IV) and evaluate
the proposed method on a standard music transcription data
set (Section V).

II. AUTOMATIC MUSIC TRANSCRIPTION

Automatic Music Transcription (AMT) attempts to repro-
duce the pitch content of a music signal. That is, it seeks
a representation which specifies what musical pitches are
present at each time frame. Note that the word “pitch”
refers to a musical note in the Western system (i.e., a single
piano key) and in terms of a spectrogram, it consists of
the fundamental frequency together with a series of higher
frequencies and overtones (this series is highly dependent
on the instrument, playing style, volume, environment etc).
Given a time-frequency matrix X of a recorded music signal,
we seek a binary transcription matrix which specifies the
presence/absence of each musical pitch at every time frame.

The most commonly used approach for AMT is the Non-
negative Matrix Factorization (NMF) algorithm [5] [6]. Given
a signal matrix with non-negative entries, NMF seeks two non-
negative matrices such that their product equals the original
signal. In NMF, the observed signals are represented as ad-
ditive combinations of elements from a learned dictionary. In
terms of AMT, the signal matrix X is usually a magnitude-
frequency representation of the signal and we seek a factor-
ization of the form

X ≈ WH (1)

where W is a matrix whose columns contain individual
pitches and the matrix H represents the final transcription.
We assume that the desired transcription is a binary matrix
indicating the presence or absence of a pitch at each time
frame. A commonly used time-frequency representation is the
Constant-Q transform which is logarithmic in the frequency
axis. In this work we used an Equivalent Rectangular Band-
width transform which is perceptually motivated and has been
shown to work well for AMT.

NMF can be cast as a latent variable model, in which the
observed signals are explained by some latent factors – for



AMT these factors are the individual pitches which we would
like to infer. We propose a latent variable model which extends
the classic NMF algorithm, in order to make it better suited
to analyzing music signals. The key points are:

• Local stationarity: once active, groups of pitches tend to
stay active over many frames. For example, once a piano
key is pressed it tends to be held over many time frames
and emits a continuous sound with a natural decay. We
capture this by building a model which implicitly imposes
a local low rank constraint, so that related frames will
share the same explanatory factors.

• Hierarchical structure: related pitches tend to co-occur
in the form of intervals, triads and chords1. Indeed, we
can specify a distinct hierarchy from chord states down
to intervallic structure and individual pitches. We achieve
this by constructing a series of local dictionaries which
are composed of combinations of pitches from a base
dictionary, such that each local model will be built using
atoms from the base dictionary.

III. A HIERARCHICAL LATENT MIXTURE MODEL FOR
AUTOMATIC MUSIC TRANSCRIPTION

In this section we propose a latent variable model for
the automatic transcription of polyphonic music. We use a
probabilistic framework which is closely related to the PLCA
model of Smaragdis [7][8], which has in turn been applied to
AMT in various forms by Benetos [9][10][11][12]. We model
the observed time-frequency signal as a joint distribution
P (f, t), where the variable t ∈ T is the time location where
P (t) supported over the set of frame indices and f ∈ F is a
frequency bin. This joint distribution induces the following
generative model for the observed signals: first sample a
frame index t with probability P (t) and then sample an
event P (f | t). As with PLCA, our general strategy will be to
factorize the joint distribution P (f, t) using a latent variable
model and learn the factors which best fit the signal.

We may factor the joint distribution according to our gen-
erative model as follows

P (f, t) = P (t)P (f | t). (2)

Further factorizing P (f | t) gives the asymmetric PLCA model

P (f, t) = P (t)
∑
p

P (f | p)P (p | t). (3)

Under this model, P (f, t) is given as a sum over p latent
pitches which explain this signal. It has been shown that up
to a scaling, this model is equivalent to classical NMF using
Kullback-Liebler divergence.

As opposed to standard PLCA, in this work we suppose
that each latent model corresponds to a collection of pitches
from some base dictionary, so that higher level concepts such
as intervals and chords can be introduced. Additionally, we
aim to represent each frame as a weighted collection of such

1In music theory, an interval describes the musical relationship between
two distinct pitches. Triads consist of triplets of pitches with certain intervallic
structures and form the building blocks of chords.

models. The underlying idea is that similar frames should use
the same latent factors in their reconstruction, and that these
latent factors will then adapt to specific commonly-occurring
pitch combinations. Furthermore by limiting the size of the
individual models, the resulting transcription is likely to be
locally low rank which has been shown to improve AMT
performance over standard NMF/PLCA [13]. For example, a
local model with a rank of r can learn r different combinations
of pitches in order to account for local changes in active
pitches, relative amplitudes and decay profiles.

Formally, suppose that the signal is composed of m latent
models, each of which is of rank-r. Each model should be
constrained to lie in a so-called pitched-subspace, so that
they correspond to linear combination of valid pitches. In the
language of NMF, the pitched-subspace will correspond to the
space defined by the columns of the base dictionary D and
the signal will be given by a weighted combination of local
models derived from D. By constraining the rank of each
model, the resulting transcription will be locally low-rank in
the sense that all frames assigned to a given model will share
similar latent factors.

We can introduce this into the model given in (3) by defining

P (p | t) =
∑
m,r

P (p |m, r, t)P (r |m, t)P (m | t). (4)

Note the similarity between this and the Low Rank Matrix
Decomposition approach [13], where here we have explicitly
factored the P (p | t), as opposed to placing a nuclear-norm
constraint on the transcription matrix. Combining (4) and
(2) gives the proposed Hierarchical Latent Mixture Model
(HLMM)

P (f, t) = P (t)
∑
p,m,r

P (f | p)P (p |m, r, t)P (r |m, t)P (m | t).

(5)
In practice this is similar to a convolutional template-matching
approach such as convolutive NMF [14] or Shift Invariant
PLCA [15], but with groups of pitch templates. This dynamic
has a clustering interpretation, where the factors P (m | t)
can be seen as a soft-assignment of every frame to each
model m. It also bears a relationship to group-sparse methods,
where collections of pitch templates are encouraged to activate
together. Furthermore, correlations between pitches may be
discovered by grouping co-occurring pitches together in a
single model, which happens naturally during the inference
stage.

The proposed model is similar to the Hierarchical Eigenin-
struments approach of Grindlay and Ellis [16][17], which mod-
els the observed signal as a collection of instrument-specific
subspaces. However, their work focussed on multi-instrument
transcription and does not exploit any particular structure to
improve the transcription quality of a given instrument. An-
other related idea is the Non-negative Hidden Markov Model
(NN-HMM) which was developed for source separation by
Mysore et al. [18]. NN-HMM learns a sequence of dictionaries
to represent local signals. There are several key difference
between the proposed HLMM and these approaches: (i) we
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Fig. 1. The proposed approach applied to piano music. In total, a collection
of 30 models of rank-3 were learned. Left: a collection of templates P (f | p)
from the base pitch dictionary. Top right: two examples of the learned local
dictionaries P (f | p,m, r, t). Each colour (blue and green) corresponds to
one of the two models, each of which has 3 templates constructed from
the base templates P (f | p). Middle right: the learned activations for each
model template. Bottom right: the model weights P (m | t) – note the extreme
sparsity.

use a mixture of models to represent frames so that each
model can be highly specialized. (ii) Each model can be used
by any frame, unlike the NN-HMM where each frame is
constrained to use the currently active dictionary. (iii) We use a
hierarchical model, where the local dictionaries are themselves
constructed from a more fundamental base dictionary. This can
be useful in cases where we have domain knowledge about the
problem (by constraining the dictionaries to live in the pitched
subspace, for example). This is also a natural assumption for
many types of signals such as natural images where shapes
and patterns are built by combining oriented edges.

IV. INFERENCE

Given an observed time-frequency signal π(f, t) we need
to fit the best factors in (5). This can be done using the
expectation-maximization (EM) algorithm to maximize the
following log-likelihood∑

f,t

π(f, t) log
(
P (t)P (f | t)

)
(6)

which has been shown to be equivalent to minimizing the
KL-divergence between π(f, t) and P (f, t) [19]. During the
E-step, we compute the posterior distribution of the latent
variables p, m and r which by Bayes theorem is given by

P (p,m, r | f, t) =
P (f | p)P (p |m, r, t)P (r |m, t)P (m | t)

P (f | t)
.

(7)

During the M-step, the remaining factors are updated using
this posterior:

P (f | p) =

∑
m,r P (p,m, r | f, t)π(f, t)∑
f,m,r P (p,m, r | f, t)π(f, t)

(8)

P (p |m, r, t) =

∑
f P (p,m, r | f, t)π(f, t)∑
f,p P (p,m, r | f, t)π(f, t)

(9)

P (r |m, t) =

∑
f,p P (p,m, r | f, t)π(f, t)∑
f,p,r P (p,m, r | f, t)π(f, t)

. (10)

The factor P (m | t) gives the contribution of model m at time-
frame t. For example, one possibility would be a degenerate
weighting in which every model contributes equally at each
frame by taking P (m | t) ≈ 1/K for all m and t, given K
models. In this case the proposed approach would reduce to
independently training K rank-r models to fit the full signal
and would severely limit the expressive power. Ideally we
want each model to specialize in representing a given chord
or interval in various decay configurations and therefore we
encourage sparsity in the final value by taking

P (m | t) =

(∑
f,p,r P (p,m, r | f, t)π(f, t)

)α

∑
m

(∑
f,p,r P (p, r | f, t)π(f, t)

)α (11)

where α ≥ 1. After updating we P (m | t) we set values below
a set threshold to zero before renormalizing. After solving for
each latent factor in (3), the joint distribution P (p, t) is given
by

P (p, t) =

∑
m,r P (p |m, r, t)P (r |m, t)P (m | t)P (t)∑
p,m,r P (p |m, r, t)P (r |m, t)P (m | t)P (t)

.

(12)
which is the desired transcription. Finally, we binarize the
transcription by setting to zero any values below a threshold
and setting the remaining entries to one.

V. EXPERIMENTAL EVALUATION

The proposed system was evaluated on 30-second excerpts
from the EnStDkcl subset of the Midi Aligned Piano Sounds
(MAPS) dataset, which consists of recordings of classical
piano music. The global dictionary P (f | p) was initialized
by training NMF models on recordings of isolated pitches
from the test instrument. To initialize the local dictionaries
P (p |m, r, t), we randomly chose collections of r frames
from the signal and decomposed them using NMF with the
base dictionary. The activations were initialized by performing
NMF over the full signal and the model weights P (m | t)
where set to 1/K. The full model was then learned by iterating
the EM algorithm:

• E-step: Compute the posterior using (7).
• M-step: Update the latent factors using (8), (9) and (10).

Note that these computations can be done in parallel over
each model.
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Fig. 2. Learned factors from 30-seconds of piano music. Left: the base dictionary. Middle: the local dictionaries arranged sequentially, with K = 30 and
r = 3. Right: the weighted activations.

After estimating all of the factors, we formed a single
large dictionary and activation matrix by concatenating each
weighted model. This was used a warm-start for several
iterations of NMF to produce the final transcription. The
resulting transcription was binarized by setting

P (p, t) =

{
0 if P (p, t) ≤ µt + τσt

1 otherwise

where µt is the mean activation value for frame t, σt its
standard deviation and τ a positive constant. For each track
we compute the number of true-postives (Ntp), false-positives
(Nfp) and false-negatives (Nfn) are used to calculate the
precision (P), recall (R) and F-measure (F)

P =
Ntp

Ntp +Nfp
R =

Ntp

Ntp +Nfn
F = 2

P ×R
P +R

. (13)

We compared the results of the proposed Hierarchical Latent
Mixture Model (HLMM) to several related approaches: β
Non-negative Matrix Decomposition (β-NMD), Weighted β
Non-negative Matrix Factorization (Wβ-NMF) [20], low rank
Non-negative Matrix Decomposition (LR-β-NMD) [13] and
the best performing system reported by O’Hanlon et al. [21],
which was Group-Sparse Non-negative Matrix Decomposition
using KL-divergence and a subspace pitch-dictionary (GS-KL-
NMD). The results are summarized in Table I where we report
the per-track average precision, recall and F-measure using the
best threshold value τ . The value of the threshold is important
and difficult to set a priori – in Figure 3 we show its affect for
both HLMM and β-NMF using the first track from the test
set.

The proposed method significantly outperforms the standard
NMF approach across all metrics. In Figure 2 we present the
learned factors. Note the strong diagonal in the weight matrix,
which shows that frames tend to favour their local model
in reconstruction. Additionally, we see that several models
are used by different groups of frames which may indicate
repeated structures in the music. The middle figure shows the
learned local dictionaries, which have specialized into distinct
chord and interval patterns.

VI. CONCLUSION

We have presented an approach to automatically transcrib-
ing the pitch content of audio signals. Starting with Proba-

Reference Model P R F
β-NMD 73.13 70.90 71.70
PLCA 72.26 72.41 72.07

[13] LR-β-NMD 73.83 73.17 73.50
[20] Wβ-NMD 73.70
[21] GS-KL-NMD 74.10

Proposed HLMM 75.58 76.11 75.54

TABLE I
TRANSCRIPTION RESULTS ON THE EnStDkcl DATA SET.
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Fig. 3. Precision, recall and F-measure curves for the first track in the
EnStDkcl data set, for different values of the threshold parameter τ . For
HLMM, the best F-measure was 0.852 versus 0.82 for β-NMF.

bilistic Latent Component Analysis, we extended the basic
factorization algorithm to represent the signal as a weighted
collection of models built from a fundamental pitch dictionary.
The resulting algorithm can infer common chord and interval
combinations which can be used to represent collections
of related frames. In the future it would be interesting to
investigate adding additional hierarchies to the model; several
works have shown the viability of decomposing the pitches
into collection of narrow band atoms, thus representing each
base pitch using a distinct subspace. This idea could be readily
adapted to fit the proposed model, resulting in a hierarchy
from narrow-band atoms all the way up to repeated musical
structures. Another direction is to investigate the connection
between clustering methods, group sparse factorizations and
low-rank models suggested by the proposed model.
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