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Abstract—In this paper, we address a multichannel audio
source separation task and propose a new efficient method called
independent deeply learned matrix analysis (IDLMA). IDLMA
estimates the demixing matrix in a blind manner and updates the
time-frequency structures of each source using a pretrained deep
neural network (DNN). Also, we introduce a complex Student’s
t-distribution as a generalized source generative model including
both complex Gaussian and Cauchy distributions. Experiments
are conducted using music signals with a training dataset, and
the results show the validity of the proposed method in terms of
separation accuracy and computational cost.

Index Terms—multichannel audio source separation, indepen-
dent component analysis, deep neural networks

I. INTRODUCTION

Blind source separation (BSS) is a technique for ex-
tracting specific sources from an observed multichan-
nel mixture signal without knowing a priori informa-
tion about the mixing system. The most commonly
used algorithm for BSS in the (over)determined case
(number of microphones ≥ number of sources) is indepen-
dent component analysis (ICA) [1]. Recently, independent
low-rank matrix analysis (ILRMA) [2], [3], which is a uni-
fication of independent vector analysis (IVA) [4] and non-
negative matrix factorization (NMF) [5], was proposed as a
state-of-the-art BSS method. ILRMA assumes both statistical
independence between sources and a low-rank time-frequency
structure for each source, and the frequency-wise demixing
matrices are estimated without encountering the permutation
problem. The source generative model assumed in ILRMA
was generalized from a complex Gaussian distribution [2]
to complex Student’s t-distribution (t-ILRMA) [6] for more
robust BSS. As a more general framework, in [7], demixing
matrix optimization based on a given spectrogram estimate
for the source was proposed, showing that the precise source
spectrogram model enables accurate spatial model estimation.

In the underdetermined case (number of microphones <
number of sources), the Duong model [8] is a commonly
used framework. In the Duong model, frequency-wise spatial
covariances, which encode source locations and their spa-
tial spreads, are estimated by an expectation-maximization
(EM) algorithm, where the permutation problem must be
solved after the optimization. Similarly to ILRMA, an NMF-
based low-rank assumption is employed in the Duong model
to automatically solve the permutation problem, resulting
in multichannel NMF (MNMF) [9], [10]. Note that these

algorithms formulate a mixing model, whereas ICA-based
methods including ILRMA estimate a demixing model for the
separation by focusing only on the determined case. It has been
experimentally confirmed that the optimization of a demixing
model is more efficient and numerically stable than that of a
mixing model [2].

In supervised (informed) source separation, deep neural
network (DNN) has shown promising performance in both
single-channel [11] and multichannel source separation [12].
In fact, when sufficient data of the audio sources are available,
DNN can effectively model their time-frequency structures.
However, it is almost impossible to compose an appropri-
ate and generalized spatial model with DNN from training
data observed in a multichannel format. This is because the
spatial model depends on many factors, including source and
microphone locations, the recording room, and reverberation.
Therefore, it is reasonable to combine a pretrained DNN
source model and a blind estimation of the spatial model.
Nugraha et al. proposed a DNN-based multichannel source
separation framework [13] using the Duong model (hereafter
referred to as Duong+DNN). Although this is a convincing
approach, a large computational cost is required to estimate
the spatial covariance (the EM algorithm in the Duong model)
and the performance is not satisfactory owing to the difficulty
of parameter optimization.

In this paper, we unify the ICA-based blind estimation of the
demixing matrix and the DNN-based supervised update of the
source spectrogram model. In the proposed method, we intro-
duce a complex Student’s t-distribution as a generalized source
generative model, and the demixing matrix (spatial model) is
efficiently optimized using a majorization-minimization (MM)
algorithm [14]. Since the proposed method utilizes a time-
frequency spectrogram matrix estimated by DNN to optimize
the spatial model, we call this method independent deeply
learned matrix analysis (IDLMA). Table I shows the relation-
ship between the existing and proposed methods. The spatial
model is blindly estimated in all the methods, while the source
spectrogram model is estimated by DNN in Duong+DNN and
the proposed IDLMA.

II. CONVENTIONAL METHOD

A. Formulation

Let N and M be the numbers of sources and channels,
respectively. The short-time Fourier transform (STFT) of the
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TABLE I
CLASSIFICATION OF MULTICHANNEL SOURCE SEPARATION METHODS

Source spectrogram model
Blind Supervised

Mixing model MNMF [10], [15] Duong+DNN [13]
Demixing model ILRMA [2], [6] Proposed IDLMA

multichannel source, observed, and estimated signals are de-
fined as sij = (sij1, . . . , sijN )>,xij = (xij1, . . . , xijM )>,
and yij = (yij1, . . . , yijN )>, where i = 1, . . . , I; j =
1, . . . , J ;n = 1, . . . , N ; and m = 1, . . . ,M are the integral
indexes of the frequency bins, time frames, sources, and
channels, respectively, and > denotes the transpose. We also
denote these spectrograms as Sn ∈ CI×J ,Xm ∈ CI×J , and
Yn ∈ CI×J , whose elements are sijn, xijn, and yijn, respec-
tively. In ILRMA, the following mixing system is assumed:

xij = Aisij , (1)

where Ai = (ai1, . . . ,aiN ) ∈ CM×N is a frequency-wise
mixing matrix and ain is the steering vector for the nth
source. The assumption of the mixing system (1) corresponds
to restricting the spatial covariance in the Duong model to a
rank-1 matrix [8]. When M = N and Ai is not a singular
matrix, the estimated signal yij can be represented as

yij = Wixij , (2)

where Wi = A−1i = (wi1, . . . ,wiN )H is the demixing matrix,
win is the demixing filter for the nth source, and H denotes the
Hermitian transpose. ILRMA estimates both Wi and yij from
only the observation xij assuming statistical independence
between sijn and sijn′ , where n 6= n′.

B. ILRMA and Its Generalization with Student’s t-distribution
In [2], [3], the following time-frequency-varying complex

Gaussian source generative model is assumed (hereafter re-
ferred to as Gauss-ILRMA):∏

i,j

p(yijn) =
∏
i,j

1

πσijn2
exp

(
−|yijn|

2

σijn2

)
, (3)

σijn
2 =

∑
k

tiknvkjn, (4)

where σijn is the variance (source spectrogram model), k =
1, . . . ,K is the index of the bases, and tikn and vkjn are the
parameters in the NMF-based low-rank model. We also denote
the variance matrix as Σn ∈ RI×J

≥0 , whose elements are σijn.
In t-ILRMA [6], (3) is generalized to a complex Student’s
t-distribution as follows:∏

i,j

p(yijn) =
∏
i,j

1

πσijn2

(
1 +

2

ν

|yijn|2
σijn2

)− 2+ν
2

, (5)

σijn
p =

∑
k

tiknvkjn, (6)

where ν is the degree-of-freedom parameter and p is the
domain parameter. When ν → ∞ and p = 2, (5) and
(6) become (3) and (4), respectively. Also, (5) with ν = 1
represents the Cauchy-distribution likelihood. The demixing
matrix Wi and NMF source model tiknvkjn can be optimized
in the maximum-likelihood (ML) sense on the basis of (3) or

(5). Since the low-rank structure of |Yn|.2 is ensured by the
NMF source model, the permutation problem can be avoided,
where |·|.p for matrices denotes the element-wise absolute and
pth-power operations.

III. PROPOSED METHOD

A. Motivation

The NMF source model in ILRMA is effective for some
sources that have a low-rank time-frequency structure. How-
ever, this source spectrogram model is not always valid. For
example, speech signals have continuously varying spectra,
which cannot be efficiently modeled by NMF, and the sepa-
ration performance of ILRMA is degraded for such sources.
If sufficient training data for each source can be prepared in
advance, it is possible to construct a suitable source spectro-
gram model by employing DNN [11]. On the other hand, since
the spatial parameters depend on many factors, it is simply
impractical to train a general spatial model with DNN even if
huge amounts of multichannel observation data are available;
therefore, the spatial parameters should be estimated blindly.

In this paper, we propose a new framework, IDLMA,
which combines the ICA-based blind estimation of demixing
matrix Wi and the supervised learning of variance matrix Σn

based on DNN, where the loss function in DNN is designed
to maximize the likelihood of the source generative model.
In addition, similarly to t-ILRMA, we use a generalized
model based on a complex Student’s t-distribution including
both Gaussian and Cauchy distributions. Duong+DNN also
employs DNN that maximizes the likelihood of the Gaussian
or Cauchy distribution. However, since the mixing model
(spatial covariance) in Duong+DNN is defined by only the
Gaussian model, the estimations of the spectral and spatial
parameters are inconsistent. In the proposed method, this
conflict is resolved by modeling the spatial parameters with
the Student’s t-distribution model and deriving its optimization
algorithm fully consistently in the ML sense.

B. Cost Function in IDLMA

Let DNNn be the DNN source model that enhances the nth
source component from a mixture signal, namely, the variance
matrix Σn is estimated by DNNn, and these DNN source
models are trained in advance. Fig. 1 shows the principle of
the separation mechanism in the proposed IDLMA.

On the basis of (3), the cost function (negative log-
likelihood of xij = W−1

i yij) in IDLMA with the complex
Gaussian distribution (Gauss-IDLMA) is obtained as

LGauss =
∑
i,j,n

[
|yijn|2
σijn2

+ 2 log σijn

]
− 2J

∑
i

log |detWi| ,

(7)
and (7) can be generalized with (5) (t-IDLMA) as

Lt =
∑
i,j,n

[(
1 +

ν

2

)
log

(
1 +

2

ν

|yijn|2
σijn2

)
+ 2 log σijn

]
− 2J

∑
i

log |detWi| , (8)



Fig. 1. Principle of source separation based on IDLMA in case of N = M = 2.

where yijn = wH
inxij . Note that Lt converges to LGauss when

ν →∞.

C. Update Rule of Source Spectrogram Model Based on DNN
DNNn is trained so that the source spectrogram |S̃n|.1 is

predicted from an input mixture spectrogram |X̃|.1, where
S̃n ∈ CI×J and X̃ ∈ CI×J are source and mixture spec-
trograms in the training data, respectively. When we define
the output spectrogram as Dn = DNNn(|X̃|.1) ∈ RI×J

≥0 , the
loss function of DNNn for Gauss-IDLMA is defined as

LGauss(Dn) =
∑
i,j

(
|s̃ijn|2 + δ1

dijn
2 + δ1

− log
|s̃ijn|2 + δ1

dijn
2 + δ1

− 1

)
,

(9)

where s̃ijn and dijn are the elements of S̃n and Dn, respec-
tively, and δ1 is a small value to avoid division by zero [13].
Also, the loss function of DNNn for t-IDLMA is defined as

Lt(Dn) =
∑
i,j

[(
1 +

ν

2

)
log

(
1 +

2

ν

|s̃ijn|2 + δ1

dijn
2 + δ1

)

+ log(dijn
2 + δ1)

]
. (10)

Since minimizing (9) or (10) is equivalent to the ML estima-
tion of σijn in (7) or (8), DNNn can be interpreted as the
proper source generative model based on (3) or (5), respec-
tively. Similarly to (8), Lt(Dn) converges to LGauss(Dn) up
to a constant when ν →∞.

The variance matrix is updated by the trained DNNn as

|Σn|.1 ← DNNn(|Yn|.1), (11)
σijn ← max(σijn, ε), (12)

where ε is a small value to increase the numerical stability
of the spatial update described in Sect. III-D. The DNN
architectures used in this paper are described in detail in
Sect. IV-B.

D. Update Rule of Demixing Matrix
The demixing matrix Wi can be optimized while taking

the statistical independence between sources and the variance
matrix Σn into account on the basis of (3) or (5). In Gauss-
IDLMA, Wi can be updated by applying iterative projection
(IP) [16] to (7), where IP is a fast and stable optimization
algorithm that can be applied to the sum of

∣∣wH
inxij

∣∣2 and
− log |detWi|. In t-IDLMA, IP cannot be applied to (8)
because

∣∣wH
inxij

∣∣2 is intrinsic in the logarithm function.
Therefore, we apply an MM algorithm [14] to derive the
update rule of win.

To design a majorization function for (8), we apply the
tangent line inequality

log z ≤ 1

α
(z − α) + logα (13)

to the logarithm term in (8), where z > 0 is the original
variable and α > 0 is an auxiliary variable. The majorization
function can be designed as

Lt ≤
∑
i,j,n

[(
1 +

ν

2

) 1

αijn

(
1 +

2

ν

|yijn|2
σijn2

− αijn

)

+
(

1 +
ν

2

)
logαijn + 2 log σijn

]
− 2J

∑
i

log |detWi|

=: L+
t , (14)

where αijn is the auxiliary variable, and Lt and L+
t become

equal only when

αijn = 1 +
2

ν

|yijn|2
σijn2

. (15)

We can apply IP in analogy with the derivation in Gauss-
ILRMA. The majorization function (14) is reformulated as

L+
t = J

∑
i,n

wH
inUinwin − 2J

∑
i

log |detWi|+ const.,

(16)

Uin =
1

J

(
1 +

2

ν

)∑
j

1

αijnσijn2
xijx

H
ij . (17)

By applying IP and substituting (15), the demixing filter win

can be updated as follows:

win ← (WiUin)−1en, (18)

win ←
win√

wH
inUinwin

, (19)

where

Uin =
1

J

∑
j

1

cijn
xijx

H
ij , (20)

cijn =
ν

ν + 2
σijn

2 +
2

ν + 2
|yijn|2, (21)

and en is an N -dimensional vector whose nth element is
one and whose other elements are zero. After calculating (18)
and (19), we update the separated signal by yijn ← wH

inxij .
In particular, when ν → ∞, the majorization function (14)
converges to the original cost function (7), and (20) converges



to

Uin =
1

J

∑
j

1

σijn2
xijx

H
ij . (22)

The update rule (18)–(21) is equal to that in t-ILRMA.
To fix the scales of yijn among the frequency bins, the

following back-projection technique is applied before updating
Σn by (11) and (12):

yijn ← [W−1
i (en ◦ yij)]mref

, (23)

where yijn is an element of Yn, ◦ is the Hadamard product,
[·]n is the nth value of the vector, and mref is the index of the
reference channel.

E. Relation between Parameter ν and Numerical Stability

In Gauss-IDLMA, Uin defined by (22) can be interpreted
as the spatial covariance matrix xijx

H
ij weighted by σijn

−2.
In general, σijn is estimated by DNNn, whose output likely
fluctuates, resulting in many spectral chasms in the time-
frequency plane. Therefore, the weight coefficient σijn−2 may
be an excessively large value, reducing the numerical stability
of Gauss-IDLMA in IP. In t-IDLMA, on the other hand, cijn
in (20) is the point internally dividing σijn2 and |yijn|2 with a
ratio of ν : 2. Since yijn is the output of a linear filter, |yijn|2
contains fewer chasms than σijn

2; this yields a beneficial
spectral smoothing and numerical stability in optimization.

A prospective drawback of t-IDLMA is slower convergence,
especially in the case of small ν close to unity, because
the strong inference of DNN is discounted. Thus, there is a
tradeoff when setting ν. The appropriate selection of ν will
be discussed in the next section.

IV. EXPERIMENTAL EVALUATION

A. Task, Dataset, and Conditions

We confirmed the validity of the proposed method by
conducting a music source separation task. We compared four
methods: ILRMA (blind, K = 20), DNN+WF, Duong+DNN,
and proposed IDLMA, where DNN+WF applies a Wiener fil-
ter constructed using all the outputs of the DNN source models
to the observed monaural signal [17]. Note that MNMF was
not included in this experiment because its performance is al-
most always inferior to that of ILRMA [18]. For Duong+DNN
and IDLMA, the variance matrix Σn was updated by DNNn

after every 10 iterations of the spatial optimization.
We used the DSD100 dataset of SiSEC2016 [19] as the

dry sources and the training datasets of DNN, where only
bass (Ba.), drums (Dr.), and vocals (Vo.) were used in this
experiment. The 50 songs in the dev data were used to train
DNNn and the top 25 songs in alphabetical order in the
test data were used for performance evaluation. The test
songs were trimmed only in the interval of 30 to 60 s. To
simulate a reverberant mixture, we produced the two-channel
observed signals by convoluting the impulse response E2A
(T60 = 300 ms) obtained from the RWCP database [20] with
each source, and the mixture of Ba. and Vo. (Ba./Vo.) or Dr.
and Vo. (Dr./Vo.) was separated. The recording condition of
E2A is given in [6]. All the signals were downsampled to
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Fig. 2. Example of SDR improvements for each method for Ba./Vo.

8 kHz. STFT was performed using a 512-ms-long Hamming
window with a 256-ms-long shift in the Ba./Vo. case and
a 256-ms-long Hamming window with a 128-ms-long shift
in the Dr./Vo. case. We used the signal-to-distortion ratio
(SDR) [21] as the total separation performance.

B. Architecture and Training of DNN Source Model

We constructed a fully connected DNN with four hidden
layers. Each layer had 1024 units, and a rectified linear unit
was used for the output of each layer. To prepare the training
data of mixture signals, we defined the following vectors:

~sjn = (s̃>(j−2c)n, s̃
>
(j−2c+2)n, · · · , s̃>(j+2c)n)>∈ CI(2c+1),

(24)

~xj = (
∑

n αjn~sjn)
(
‖∑n αjn~sjn‖2 + δ2

)−1 ∈ CI(2c+1),
(25)

s̄jn = (αjns̃jn)
(
‖∑n αjn~sjn‖2 + δ2

)−1 ∈ CI , (26)

where s̃jn ∈ CI is the STFT of the nth source at j (the
column vector of S̃n), ~xj and s̄jn are the mixture and source
vectors, respectively, αjn is a random variable in the range
[0.05, 1], which controls the signal-to-noise ratio in ~xj , and
δ2 is a small value to avoid division by zero. The input and
output vectors of DNNn are |~xj |.1 and |s̄jn|.1, respectively.

To optimize DNN, we added the term (λ/2)
∑

q gq
2 to (9)

or (10) for regularization, where gq is the weight coefficient in
DNN, and ADADELTA [22] with a 128-size mini-batch was
performed for 200 epochs. The parameter ε was experimen-
tally optimized and set to 0.1 × (IJ)−1

∑
i,j r̂ijn. The other

parameters were set to δ1 = δ2 = 10−5, c = 3, and λ = 10−5.

C. Comparison of Separation Performance

Fig. 2 depicts an example of the convergence behaviors of
ILRMA and IDLMA. These results show that (a) the DNN
source model leads the demixing matrix to more accurate
estimation, resulting in a significant leap of SDR improvement,
and (b) a larger ν provides a faster spatial model update
but t-IDLMA with the appropriate ν (=1000) converges to
a higher SDR than Gauss-IDLMA (ν =∞), as mentioned in
Sect. III-E.

Figs. 3 and 4 show the average SDR improvements of 25 test
songs for Ba./Vo. and Dr./Vo., respectively. We can confirm
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that the proposed IDLMA outperforms the other methods for
both mixtures of instruments. In particular, t-IDLMA with ν =
1000 achieves the highest separation accuracy.

D. Computational Times

To show the efficiency of the proposed approach, we com-
pared the computational times of ILRMA, Duong+DNN, and
IDLMA for 100 iterations of spatial optimization. We used
Python 3.5.2 (64-bit) and Chainer 2.1.0 with an Intel Core
i7-6850K (3.60 GHz, 6 Cores) CPU. To calculate the DNN
outputs, a GeForce GTX 1080Ti GPU was utilized. Examples
of computational times were 23.3 s for ILRMA, 287.1 s for
Duong+DNN, and 26.6 s for IDLMA. These results confirm
that the proposed method is as fast as conventional ILRMA
and more than 10 times faster than Duong+DNN.

V. CONCLUSION

In this paper, we proposed a new determined source separa-
tion method that unifies ICA-based blind spatial optimization
and the DNN-based supervised source spectrogram model. The
proposed method employs a complex Student’s t-distribution
as the source generative model. An experimental comparison
showed the efficacy of the proposed method in terms of both
the separation accuracy and the computational cost.
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