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Abstract—With the increasing amount of video being con-
sumed by people daily, there is a danger of the rise in maliciously
modified video content (i.e., ‘fake news’) that could be used
to damage innocent people or to impose a certain agenda,
e.g., meddle in elections. In this paper, we consider audio
manipulations in video of a person speaking to the camera.
Such manipulation is easy to perform, for instance, one can
just replace a part of audio, while it can dramatically change
the message and the meaning of the video. With the goal to
develop an automated system that can detect these audio-visual
speaker inconsistencies, we consider several approaches proposed
for lip-syncing and dubbing detection, based on convolutional
and recurrent networks and compare them with systems that are
based on more traditional classifiers. We evaluated these methods
on publicly available databases VidTIMIT, AMI, and GRID, for
which we generated sets of tampered data.

I. INTRODUCTION

Recent advances in automated video and audio editing tools,
generative adversarial networks (GANs), and social media
allow creation and fast dissemination of high quality tampered
video content. Such content already led to appearance of delib-
erate misinformation, coined ‘fake news’, which is impacting
political landscapes of several countries [1]. A recent surge of
videos, often obscene, in which a face can be swapped with
someone else’s using neural networks, so called ‘deepfakes’1,
are of a great public concern2. Therefore, the development of
effective tools that can automatically detect tampered audio-
visual content is of paramount importance.

In this paper, we focus on detecting audio-visual tampering
in a video of speaking person, i.e., the inconsistencies between
video and audio tracks. We present a set of publicly avail-
able databases with disproportionately large and challenging
tampering video sets and, using these databases, benchmark
several approaches for tampering detection. The problem of
speaker audio-visual inconsistencies detection is related to
dubbing and lip-syncing detections, therefore, we look into the
solutions proposed for those problems. The main difference of
tampering is that it has a malicious intent and is meant to spoof
the viewer into thinking that it is the original video.

Typically, most of the latest approaches [2], [3], [4], [5], [6],
[7] for lip-syncing or dubbing detection focus on extracting
separate feature sets for audio and video. For audio, mel-
scale frequency cepstral coefficients (MFCC) are usually used,
while different visual features, varying from optical flow [3]

1Open source code: https://github.com/deepfakes/faceswap
2BBC (Feb 3, 2018): http://www.bbc.com/news/technology-42912529

to features learned with deep neural networks (DNNs) [6], are
extracted from the mouth region of a face. The features then
undergo some processing before they are fed into a classifier,
best performing examples including long short-term memory
(LSTM) [4] or convolutional neural networks [7].

In this paper, building upon related work, we selected a
range of approaches suitable for audio-visual inconsistency
detection and performed a preliminary study of different fea-
ture processing techniques, classifiers, and their parameters on
different databases with tampering attacks. For our tampering
detection systems, we used MFFCs as audio features [3]
and distances between mouth landmarks as visual features
(inspired by [8]). We explored different ways to post-process
the features, including ways to combine two types of features,
reduce the dimensionality of blocks of features with principal
component analysis (PCA), and project both modalities into a
common space with canonical correspondence analysis (CCA).
We also considered different classifiers, including Gaussian
mixture model (GMM), support vector machine (SVM), mul-
tilayer perceptron (MLP), and LSTM.

For the databases, we have selected three different public
databases with audio-visual data: VidTIMIT3, AMI corpus4,
and GRID corpus5. For each video in a database, we generated
five tampered versions by randomly replacing audio track of
the person in the video with an audio from another person.
Also, it should be noted that videos in VidTIMIT and GRID
databases were shot in controlled environments (people are
facing camera and reciting predetermined short phrases), while
AMI database consists of informal meeting recordings (profile
faces, mouth occlusions, unclear speech, etc.), which means it
has a more practical and realistic data.

To allow researchers to verify, reproduce, and extend our
work, we provide all implementations of the evaluated systems
and scripts for generation of tampered data for the databases
as an open source Python package available to public6.

Therefore, the main contributions of this paper include (i)
evaluation of different approaches for audio-visual tampering
detection, (ii) three databases with tampering videos, and (iii)
open source implementation of evaluated systems and scripts
for generation of tampered video.

3http://conradsanderson.id.au/vidtimit/
4http://groups.inf.ed.ac.uk/ami/download/
5http://spandh.dcs.shef.ac.uk/gridcorpus/
6Open source code: https://gitlab.idiap.ch/bob/bob.paper.eusipco2018



(a) VidTIMIT (b) AMI (c) GRID
Fig. 1. Example screenshots from three databases used in the experiments.

II. DATABASES AND PROTOCOL

Since there is lack of public databases with tampered videos,
we looked into available databases with recordings of people
speaking in front of the camera and generated our own sets
of tampered videos. We have selected three databases (see
Table I), VidTIMIT, as an example of small ‘toy’ database
(10 of 3 sec videos per person), GRID corpus, consisting of
a large set of short videos (1000 of 3 sec videos per person)
in high definition of people facing camera and speaking very
short similar-sounding sentences, and AMI corpus, as the most
realistic representation of a practical scenario for tampering
detection, since it contains recordings of people in office
meetings informally talking to each other.

Since AMI database contains both panoramic and videos of
individuals, we considered only 977 close up camera videos
of consistent speech by the person in the camera, minimizing
the crosstalk. Total length of the genuine set is about 6 hours
and average video length is 22 sec.

For each database, tampered videos were generated by
taking genuine videos and replacing audio track with randomly
selected audio from five other speakers. So, for each video
from the genuine set, we generated five tampered versions,
where video and audio tracks are mismatched. This creates
an imbalance in the dataset with five times more attacks than
genuine videos, effectively, simulating a realistic scenario of
having many tampered versions of a genuine video.

Both genuine and tampered parts of the databases were
split into training (Train) and development (Test) subsets as
shown in Table I. To avoid bias during training and testing,
we arranged that the same person would not appear in both
sets.

A. Evaluation protocol

Using the computed scores, false acceptance rate (FAR)
and false reject rate (FRR) are computed for each possible
threshold θ:

FAR(θ) =
|{hneg | hneg ≥ θ}|

|{hneg}|

FRR(θ) =
|{hpos | hpos < θ}|

|{hpos}|
,

(1)

TABLE I
DETAILS FOR VIDTIMIT, AMI, AND GRID DATABASES.

Database Type of data Train Test Total
VidTIMIT subjects 22 21 43

time (hours) 0.25 0.26 0.51

genuine 220 210 430

tampered 2 995 2,033

AMI subjects 42 36 54

time (hours) 3.82 2.28 6.1

genuine 613 364 977

tampered 2,732 1,934 4,666

GRID subjects 17 16 33

time (hours) 14.01 13.19 27.2

genuine 17,000 15,890 32,891

tampered 79,479 75,646 155,125

where hpos is a score for genuine samples and hneg is a score
for the tampered samples. Threshold θ, at which these FAR
and FRR are equal leads to an equal error rate (EER), which
is commonly used as the single value metric of the system
performance.

III. FEATURES AND CLASSIFIERS

The goal of the considered tampering detection system is to
distinguish genuine video, where lip movement and speech are
synchronized, from tampered video, where lip movements and
audio, which may not necessarily be speech, are not synchro-
nized. The stages of such system include feature extraction
from video and audio modalities, processing these features,
and then, a two-class classifier trained to separate tampered
videos from genuine.

A. Video features

To extract visual features that characterize lip movements,
we need to reliably detect mouth region in the video. For
that, we use OpenPose7 for body pose [9] and face landmarks

7https://github.com/CMU-Perceptual-Computing-Lab/openpose



(similar to hands detection in [10]) detection. Based on these
detections, we estimate whether the face is frontal (e.g., AMI
database contains a lot of profile faces) and then, to character-
ize the mouth movements, we compute 42 different distances
between 20 detected points of the mouth (see Figure 3 for
an example), i.e., using points 48 to 64 in Figure 2. These
features, though simple, are quite effective, as it is shown
in [8], where mouth landmarks were used to generate realistic
mouth movements from a given audio speech. In this paper,
because mouth features are significantly different in profile
faces, we consider frontal faces only.

B. Audio features

As per the latest related work [3], [4], [5], [6], we also
use 13 MFCC features with their delta, double-delta deriva-
tives [11], and energy (40 coefficients in total) to characterize
speech in audio. MFCCs are computed from a power spec-
trum (power of magnitude of 512-sized FFT) on 20ms-long
windows with 10ms overlap. Prior to the computation, we pre-
emphasize with 0.97 coefficient, apply Hamming window, and
normalize raw speech signal by subtracting its mean.

C. Processing features

There are two main ways to incorporate video and audio
modalities into the final system: (i) merge the outputs of
two neural networks (one for each modality), i.e., by using
contrastive loss as in [4], [7] for detecting out of sync
audio shifts, or (ii) combine two types of features prior to
the classification, as most of other works use. We follow
the second approach, as it is suitable for different types of
problems, including tampering detection.

Therefore, we concatenate visual features and MFCC fea-
tures into one joint vector. Since visual features are extracted at
25 per seconds (as per the video frame rate) and audio features
at 100 per seconds (MFFCs are computed on windows shifted
by 10ms), we tried the following ways to combine features:
(i) upsample video frame rate to match 100 fps of the audio,
(ii) downsample audio features to match video 25 fps [5], and
(iii) for a fixed temporal window, combine all features into
one vector [3]. Third option allows preserving local temporal
context in each resulted feature vector that can be learnt by
the classifier. Also, after extensive experiments, this approach
led to better and more stable results for different databases.
In our experiments, we varied the size of the temporal block
from 0.08 sec to 0.4 that lead to the joint feature vector varying
from 402 to 2020 values.

Principal component analysis (PCA) is often used to reduce
the dimensionality of the feature vector. We adopted this
approach to reduce the size of the joint visual-audio feature
vector, and used 60 (about 95% of variance depending on
the database), 80, and 100 (about 98% variance depending
on the database) components in the experiments. For each
database, the Train set was used to train PCA matrix, which
was then applied to all combined features for all samples in
the database.

Fig. 2. The 68 landmarks detected by dlib library. This image was created
by Brandon Amos of CMU who works on OpenFace.

Fig. 3. Screenshot from tampered video (GRID corpus) showing detected
visual features and spectrogram.

Canonical-correlation analysis (CCA) is also sometimes [2],
[3] used to harmonize features of two modalities prior to the
dimensionality reduction, but, in our experiments, we found
this technique to have little effect on the results (about 1%
reduction in error) and, therefore, do not report it in this paper.

D. Classifiers

In our experiments, we used Gaussian mixture model
(GMM), with varying number of components from 8 to 32,
support vector machine (SVM), with best parameters estimated
by cross-validation on smaller subsets, multilayer perceptron
(MLP), with varying hidden layer size from 8 to 64, and long
short-term memory (LSTM) classifiers, with varying cell size
from 8 to 64.

The computed features (see Figure 3 for an illustration) from
the Train sets of the databases were used to train the models of
the classifiers. The EER (see Section II-A for details) values
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Fig. 4. Features and the architecture of LSTM network.

were computed for both Train and Test sets separately, so we
can quickly evaluate if the model overfitted on the training
set. For GMM, only one model was trained for genuine
data and the mean log-likelihood value determined whether
the evaluated sample is genuine (value is lower than EER
threshold) or tampered (value is higher than EER threshold).

E. LSTM-based system

The architecture of LSTM-based system is presented in
Figure 4. We used one-layer LSTM network implemented
with Tensorflow8 with sigmoid activation function used in the
inner cells. The output of the last LSTM cell is forwarded the
fully connected layer with two neurons corresponding to the
two output classes (genuine and tampered). A SoftMax cross
entropy loss function is computed and Adam optimization
algorithm [12] with constant learning rate 0.001 is used to
optimize the loss.

Since LSTM network learns a temporal context, the PCA-
reduced multimodal features are combined into sliding win-
dows to form an input to LSTM-based system. The size of
the temporal window is also a parameter of the system.

Some of the important implementation details of the LSTM-
bases systems are as follows:

• The training data is balanced in terms of the number of
samples from genuine and tampered classes. Since in our
databases, genuine set is much smaller than tampered, the
data from tampered set is randomly sampled to produce
a similar number of features as in the genuine set;

• LSTM is trained using random mini batches of size 16
of sliding windows;

• To improve convergence of LSTM, the data from different
classes is fed into the network in a random order to
increase the chance that each mini batch has a mixture
of samples from different classes.

8https://www.tensorflow.org

TABLE II
EER VALUES OF LSTM-BASED TAMPERING DETECTION SYSTEM FOR

TRAIN AND TEST SETS FROM THREE DATABASES.

Database System Train (%) Test (%)
VidTIMIT LSTM(64), blk5, pca60, win10 0.56 24.74

LSTM(32), blk5, pca60, win10 1.26 24.74
MLP (64), blk5, pca60, win10 9.03 53.45
SVM, blk2, pca60 27.36 56.18
SVM, blk5, pca60 3.65 30.36
SVM, blk5, pca100 0.00 45.28
GMM32, blk5, pca60 2.62 56.09

AMI LSTM(64), blk5, pca60, win10 1.55 33.86
LSTM(32), blk5, pca60, win10 1.47 34.68
MLP (64), blk5, pca60, win10 24.48 41.21
SVM, blk2, pca60 16.80 48.39
SVM, blk5, pca60 24.35 50.06
SVM, blk5, pca100 23.15 54.68
GMM32, blk5, pca60 50.41 47.84

GRID LSTM(64), blk5, pca60, win10 0.73 14.12
LSTM(32), blk5, pca60, win10 0.93 15.25
MLP (64), blk5, pca60, win10 7.38 28.58
SVM, blk2, pca60 4.68 30.06
SVM, blk5, pca60 6.54 23.93
SVM, blk5, pca100 13.92 35.06
GMM32, blk5, pca60 41.33 46.81

IV. EVALUATION RESULTS

Different parameters for feature processing and classifiers,
coupled with experiments on three databases: VidTIMIT, AMI,
and GRID, led to more than 300 experiments, which can be
reproduced with the provided open source code6.

The selected results on three databases are shown in Ta-
ble II, which presents EER for different systems computed
on both Train and Test sets of the databases. In the ‘System’
column, the system with its main parameter is indicated (e.g.,
cell size for the LSTM or number of components for GMM),
followed by the size of the feature block used (see Sec-
tion III-C), followed by PCA with the number of components,
and, for LSTM systems, the length of the temporal window. It
can be noted from the table that LSTM-based system shows
the best performance for all databases. In fact, it is the only
system that could consistently perform on all databases, while
other systems show EER close to 50% on Test set. However,
the fact that EER value for LSTM-based system is below
1% for the Train set but higher than 14% for the Test set,
means the system overfit on the training data. To illustrate
the performance of the best LSTM-based tampering detection
system in more details, we plot detection error tradeoff (DET)
curves for different databases in Figure 5.

By looking at Table I with database sizes and the results
in Table II, we can note that the LSTM-bases system has
the lowest EER for Test set on GRID database, while it
is the largest database with more than 14 hours of genuine
and 70 hours of tampered training data. Subjects in GRID
database speak very similar short sentences, leading to speech
in tampered video to become similar to genuine, as illustrated
by the Figure 6. Although, VidTIMIT also contains frontal
faces and short sentences, there are only 10 video per person
instead of a 1000 in GRID. Hence, LSTM performs better on
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Fig. 5. DET curves for LSTM-based tampering detection system on different databases.

Genuine	

Tampered	

Fig. 6. Similar looking spectrograms of genuine and tampered speech from
GRID corpus.

GRID due to the lack of training data in VidTIMIT and AMI.
AMI data is also more challenging with multiple occlusions of
mouth region, profile faces, and crosstalk from other speakers.

V. CONCLUSIONS

In this paper, based on the related work on lip-syncing and
dubbing detection, we benchmarked systems for tampering
detection, specifically, audio-visual inconsistencies in videos
of speaking people. By using deltas between mouth landmarks
for visual features and MFCCs for audio, we considered
several feature processing methods with different parameters
and different classifiers, including Gaussian mixture model
(GMM), support vector machine (SVM), multilayer perceptron
(MLP), and long short-term memory (LSTM) networks. The
evaluations were done on three publicly available databases,
namely, VidTIMIT, AMI, and GRID, which we augmented
with tampered video data. The experiments demonstrate that
only LSTM-based system can consistently detect tampered
data in three databases, though, more efforts need to be put
into improving the accuracy of such systems.

In the future, more complex architectures of neural net-
works, including LSTMs and 3D convolutional networks,
should be explored and larger databases are necessary for train-
ing such systems. Also, with appearance of videos, where faces
are automatically and unnoticeably swapped using generative
adversarial networks (GANs), the tampering detection systems
need to be trained and tested on such video data.
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