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Model-Based Voice Activity Detection in Wireless
Acoustic Sensor Networks

Yingke Zhao1,2, Jesper Kjær Nielsen2, Mads Græsbøll Christensen2 and Jingdong Chen1
1CIAIC and School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

2Audio Analysis Lab, CREATE, Aalborg University, Aalborg, Denmark

Abstract—One of the major challenges in wireless acoustic
sensor networks (WASN) based speech enhancement is robust
and accurate voice activity detection (VAD). VAD is widely used
in speech enhancement, speech coding, speech recognition, etc.
In speech enhancement applications, VAD plays an important
role, since noise statistics can be updated during non-speech
frames to ensure efficient noise reduction and tolerable speech
distortion. Although significant efforts have been made in single
channel VAD, few solutions can be found in the multichannel case,
especially in WASN. In this paper, we introduce a distributed
VAD by using model-based noise power spectral density (PSD)
estimation. For each node in the network, the speech PSD and
noise PSD are first estimated, then a distributed detection is
made by applying the generalized likelihood ratio test (GLRT).
The proposed global GLRT based VAD has a quite general form.
Indeed, we can judge whether the speech is present or absent by
using the current time frame and frequency band observation
or by taking into account the neighbouring frames and bands.
Finally, the distributed GLRT result is obtained by using a
distributed consensus method, such as random gossip, i.e., the
whole detection system does not need any fusion center. With the
model-based noise estimation method, the proposed distributed
VAD performs robustly under non-stationary noise conditions,
such as babble noise. As shown in experiments, the proposed
method outperforms traditional multichannel VAD methods in
terms of detection accuracy.

Index Terms—Wireless acoustic sensor networks, noise PSD
estimation, distributed voice activity detection

I. INTRODUCTION

With the development of distributed optimization methods,
WASN is becoming more and more popular in audio signal
processing applications. Compared to the traditional micro-
phone arrays, WASNs are more flexible and scalable, and are
able to physically cover a larger space and capture more spatial
information. The distributed speech enhancement methods,
such as the distributed Wiener filter [1], the distributed max-
imum SNR filter [2], the distributed beamforming [3], need
an estimate of the second-order statistics of the noise before
forming the linear filter. Usually, the noise covariance matrix
is estimated in a recursive way, and the estimated covariance
matrix is updated only when the speech is absent. Therefore,
an accurate global voice activity detection (VAD) is needed
to detect the presence/absence of human speech. In terms
of frequency domain multichannel speech enhancement, the
global VAD needs to be obtained at each time frame and each
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frequency band. Single channel VAD has been extensively
studied [4], [5], but not in the multichannel and the WASN
cases. In [6], the VAD problem with WASN is formed as a
node clustering problem first, and then the VAD is obtained
locally at the clustered nodes. However, the development of
distributed VAD method with global decision making strategy
is not well studied.

For a WASN, the VAD can be developed in a centralized
way or in a distributed manner. The distributed method is
more flexible than the centralized one, since each node can
leave or join the network and does not depend on a fusion
center. Besides, in terms of reducing the data traffic and
the communication bandwidth in the network, the distributed
way is usually preferred [7]. In [8], the authors developed a
multichannel noise estimation method based on multichannel
speech presence probability (MC-SPP) estimation, which can
also be used in making the multichannel VAD decision. The
results show that the detection performance increases by using
multiple microphones. Even though the results are promising,
this method needs to be initialized carefully, and the optimal
parameters are difficult to find. Moreover, the whole system
only works in a centralized way. In order to implement
distributed speech enhancement techniques, it is essential to
develop a robust VAD method that works in a distributed way.

This paper introduces a distributed model-based VAD
method. The proposed method is able to obtain a global
decision distributedly per frame and band. Additionally, the
distributed VAD maintains robust detection performance even
with non-stationary noise. For the distributed VAD, the noise
PSD estimation is performed at each node independently.
Any noise PSD estimation method can be applied here. The
traditional noise estimation methods, such as the minimum
mean-square error (MMSE) noise PSD estimator [9], [10]
and the minimum statistics (MS) noise PSD estimator [11]
are widely used, but these methods have limited performance
when dealing with non-stationary noise. In [12], the authors
introduced a model-based noise PSD estimator by applying
a statistical model to the speech and noise signals. The
proposed noise PSD estimator is able to include prior spectral
information about speech and different types of non-stationary
noise [13]. Based on the estimated noise PSDs, we apply the
GLRT to obtain the global decision. In this case, we find that
the GLRT involves a distributed averaging problem, which can
easily be solved by applying distributed consensus methods,
such as the random gossip method [14], the alternating di-
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rection method of multipliers (ADMM) [15], the primal-dual
method of multipliers (PDMM) [16]. In the distributed VAD,
besides considering the inter-band information, we further take
the inter-frame information into account to improve the VAD
performance.

II. SIGNAL MODEL AND PROBLEM FORMULATION

The problem considered in this paper is to develop a
distributed VAD per time frame and frequency band in a
WASN. Mathematically, this is a two-state model selection
problem. At frequency bin k and time frame n, we have
one hypothesis H0(k, n) denoting that speech is absent at
all microphones, and one hypothesis H1(k, n) denoting that
speech is present at all microphones, i.e.,

H0(k, n) : ¯y(k, n) = ¯v(k, n),

H1(k, n) : ¯y(k, n) = ¯s(k, n) + ¯v(k, n), (1)

where

¯y(k, n) =
⇥
¯yT
1 (k, n), ¯yT

2 (k, n), . . . , ¯yT
M (k, n)

⇤T
(2)

is the network wide noisy observation. ¯s(k, n) and ¯v(k, n)
are the clean speech vector and the additive noise vector
respectively, and [·]T denotes the transpose operator. The
observation vector at the mth microphone contains the N past
time segments as

¯ym(k, n) =

[yT
m(k, n), yT

m(k, n� 1), . . . , yT
m(k, n�N + 1)]

T , (3)

where ym(k, n) contains 2K +1 frequency bands centered at
frequency index k, i.e.,

ym(k, n) = [Ym(k �K,n), ..., Ym(k +K,n)]T , (4)

where Ym(k, n) is the short-time-Fourier-transform (STFT)
coefficient of the time domain noisy signal. Thus, ¯ym(k, n)
contains both the inter-band and inter-frame information. For
the special case, K = 0 and N = 1, ¯ym(k, n) only contains
the current frame and current band. ¯s(k, n) and ¯v(k, n) have
the same form as ¯y(k, n).

In order to solve the VAD problem, we assume a complex
Gaussian statistical model to each STFT coefficient, this model
has been widely used in the noise PSD tracking methods [9],
[10], [18], and is given by

p(Ym(k, n)|H0(k, n)) =

1

⇡�Vm(k, n)
exp

⇢
� |Ym(k, n)|2

�Vm(k, n)

�
, (5)

p(Ym(k, n)|H1(k, n)) =
1

⇡(�Sm(k, n) + �Vm(k, n))

⇥ exp

⇢
� |Ym(k, n)|2

�Sm(k, n) + �Vm(k, n)

�
, (6)

where �Sm(k, n) and �Vm(k, n) are speech PSD and noise
PSD respectively. We further assume that Ym(k + , n �
⌘),m = 1, ...,M, = �K, ...,K, ⌘ = 0, ..., N � 1 are
independent given H0(k, n) or H1(k, n).

In a WASN, the two-model selection problem in (1) can be
solved in a distributed way. Before going into the distributed
solution, the centralized VAD is first introduced in the next
section.

III. CENTRALIZED VAD
This section formulates the centralized detection problem.

We apply the GLRT method to solve the VAD problem in (1).
Based on the detection theory, the GLRT makes the decision
with the following function:

LG(¯y(k, n)) =
p(¯y(k, n)|H1(k, n))

p(¯y(k, n)|H0(k, n))
H0

<
>
H1

�, (7)

where LG(¯y(k, n)) is called the generalized likelihood ratio,
p(¯y(k, n)|H1(k, n)) and p(¯y(k, n)|H0(k, n)) are the likeli-
hood functions, and � > 0 is a threshold which is found by
PFA =

R
{ȳ(k,n):LG(ȳ(k,n))>�} p(¯y(k, n)|H0(k, n))d¯y(k, n)

[19], where PFA is the false alarm rate. With the independency
assumption in Section II, the likelihood functions in (7) can
be written as

p(¯y(k, n)|H0(k, n)) =
MY

m=1

KY

=�K

N�1Y

⌘=0

p(Ym(k + , n� ⌘)|H0(k, n)), (8)

p(¯y(k, n)|H1(k, n)) =
MY

m=1

KY

=�K

N�1Y

⌘=0

p(Ym(k + , n� ⌘)|H1(k, n)), (9)

By taking the logarithm in (7) and with (8), (9), we have

lnLG(¯y(k, n)) =

MX

m=1

KX

=�K

N�1X

⌘=0

ln


p(Ym(k + , n� ⌘)|H1(k, n))

p(Ym(k + , n� ⌘)|H0(k, n))

�

H0

<
>
H1

ln �.

(10)

As shown in (10), the GLRT function is the summation of
local information which is held by each microphone.

IV. DISTRIBUTED VAD
As mentioned in section III, the GLRT function in (10)

is nothing but a summation of local information. Therefore,
the GLRT function can be obtained by solving the distributed
averaging problem [14], i.e., a = (1/M)

PM
m=1 pm, where

pm indicates the local value at the mth node. The problem in
(10) involves the computation of the following quantity:

pm =

KX

=�K

N�1X

⌘=0

ln


p(Ym(k + , n� ⌘)|H1(k, n))

p(Ym(k + , n� ⌘)|H0(k, n))

�
. (11)

Standard consensus propagation algorithms, such as random
gossip [14], ADMM [15] and PDMM [16], can be used to
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compute (10) in a distributed way. In a gossip algorithm, each
node communicates with one neighbor in each time slot. More
specifically, in a certain time slot, node i will contact some
neighboring node j with probability Pi,j . In this paper, we
uniformly at random choose a neighbouring node of the ith
node. Then nodes i and j set their estimates of a equal to the
average of their current values [14]. After random gossip has
converged, each node will get an accurate estimate of a. We
apply the random gossip method to obtain (10) distributedly.
The distributed detection procedure is shown in Algorithm 1.

Algorithm 1 Distributed VAD
Description:

1: for m = 1, 2, 3, ...,M
2: Input ¯ym(k, n).
3: Estimate �Sm(k + , n � ⌘), �Vm(k + , n � ⌘),  =

�K, ...,K, ⌘ = 0, ..., N � 1 using the model-based noise
PSD estimator (see Section V).

4: Get the local information in (10), i.e.,
pm =

PK
=�K

PN�1
⌘=0 ln

h
p(Ym(k+,n�⌘)|H1(k,n))
p(Ym(k+,n�⌘)|H0(k,n))

i
.

5: end for
Apply random gossip to caculate lnLG(¯y(k, n)):

6: for g = 1, 2, 3, ..., G
7: At the gth iteration, randomly select a node i and activate

one of its neighbours, i.e., node j.
8: Node i and node j update their estimations by averaging

their current values.
9: end for

10: Repeat step 6-step 9 until convergence. We can make a
global solution of the GLRT function in each node.

11: Make the decision about whether it is H0(k, n) or
H1(k, n) based on (10) in each node.

V. MODEL-BASED NOISE PSD ESTIMATION

So far, we have assumed that the speech PSD and the
noise PSD are known. In practice, these PSDs need to be
estimated. For noise PSD tracking, the well-known MMSE
[9], [10] method and the MS [11] method work well with
stationary noise. For non-stationary noise, however, they have
limited performance [13]. In this section, we briefly summarize
a model-based noise PSD estimation method which are able
to track non-stationary noise, such as babble noise. A detailed
description can be found in [12].

At each microphone, the T time domain samples of the
noisy signal are observed as y0

m = s0m + v0
m. The noise PSD

mentioned in (5) and (6) is defined as [17]

�Vm(k, n) = lim

T!1

1

T
E[|Vm(k, n)|2|y0

m]. (12)

The conditional expectation in (12) is the second moment of
the density p(|Vm(k, n)|2|y0

m) which leads to another form of
(12), i.e.,

�Vm(k, n) =

lim

T!1

1

T

Z

RT⇥1

|Vm(k, n)|2p(v0
m|y0

m)dv0
m

�
. (13)
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Fig. 1: Room setup. The blue circles indicate microphones,
red diamond is the desired signal, green diamond denotes the
noise signal, and the red lines are edges.

To compute the posterior p(v0
m|y0

m), we introduce statistical
models which are denoted as {Ml}Ll=1 to explain the data.
These models can be incorporated into (13). Then the model
based PSD can be expressed as

�Vm(k, n)

⇡ 1

T

LX

l=1

p(Ml|y0
m)

Z

RT⇥1

|Vm(k, n)|2p(v0
m|y0

m,Ml)dv
0
m

�

=

LX

l=1

p(Ml|y0
m)�Vm(k, n|Ml) (14)

With the model probabilities {p(Ml|y0
m)}Ll=1, the models

explaining the data well are given more weight than the other
models. We use the autoregressive models to model the speech
and noise signals. In practice, the AR-parameters are pre-
trained and stored in speech and noise codebooks. Finally,
we get a model-averaged version of the MMSE estimator [9],
[10] as

ˆ�Vm(k, n) =
1

T

LX

l=1

p(Ml|y0
m)[|fH ˆv0

m,l|2 + fH ˆ

⌃lf ] (15)

The definitions of f , ˆv0
m,l and ˆ

⌃l can be found in [12].
A more detailed derivation of the model-based noise PSD
estimation is available in [12]. The estimated speech PSD can
be obtained in a similar way. Inserting (15) and the speech
PSD estimate in (5) and (6), and with the distributed estimation
of lnLG(¯y(k, n)), the decision is made by using (10).

TABLE I: Location of the microphone and the corresponding
input SNR. The axis z is 1.5 m for all microphones.

mic index 1 2 3 4 5
(x,y) (4.7, 5.0) (2.3, 6.6) (7.9, 5.1) (2.5, 5.1) (3.3, 7.9)

iSNR(dB) 4.3 2.8 -4.1 7.5 -0.3
mic index 6 7 8 9 10

(x,y) (5.0, 3.3) (8.1, 8.3) (6.5, 6.0) (6.8, 6.7) (8.7, 8.0)
iSNR(dB) 7.5 -22.7 -3.6 -6.9 -17.4
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(a) The ROC curve at microphone 7 with different number
of iterations, K = 1 and N = 1.
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(b) The ROC curve at microphone 8 with different number
of iterations, K = 1 and N = 1.

Fig. 2: The convergence performance of the distributed VAD.

VI. EXPERIMENTAL RESULTS

In this section, numerical experiments are used to demon-
strate the performance of the distributed VAD in a simulated
room acoustic. We simulate a room of size 10 m⇥10 m⇥3 m,
with the room impulse response generated by using the image
source model method [20]. The reverberation time is T60 ⇡
150 ms. As shown in Fig. 1, we have 10 microphones ran-
domly placed in the room. The solid lines indicate edges, and
the two nodes connected by the edge can communicate with
each other, the communication distance is set to be 3.5 m. The
desired signal is located at (3,3,1.5). The noise is simulated as
a point source located at (8,8,1.5). The noise signal is scaled
to have the same power as the desired signal. The position
of the nodes and corresponding input SNR information are
shown in Table I. The model-based noise PSD estimator which
is introduced in Section V needs the codebooks being trained
in advance. In the experiments, the codebooks are trained by
using the LPC-VQ method [21]. We train a speech codebook
with 64 entries (32 entries for male speaker and 32 for female
speaker). The noise codebook contains 16 entries (4 entries
for babble, restaurant and exhibition noise and 2 entries for
street and station noise). The speech training data is from the
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(a) The ROC curve by only using neighbouring frequency
information (K = 1 and N = 1).
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(b) The ROC curve by using neighbouring frequency in-
formation (K = 1) and neighbouring frame information
(N = 2).

Fig. 3: The VAD performance by using different noise PSD
estimation methods, and the MC-SPP based method.

TIMIT database [22] and the noise training data is from the
NOIZEUS database [23]. The testing speech is taken from
the CHiME corpus [24], and the testing noise is from part
of the NOIZEUS database which are not used in the training
step. We set the clean signal received by the first microphone
as the desired signal, i.e., X1(k, n). In order to get the ROC
curve, we set a power threshold to the normalized subband
energy of the desired signal to get a ground truth decision
matrix. More specifically, the frequency bands with higher
energy than the threshold are marked as speech presence, and
the others are marked as speech absence. For the distributed
consensus step, we apply the random gossip method to get the
distributed averaging result. For comparison, we also evaluate
the performance of MMSE and MS based VAD methods, i.e.,
apply the MMSE noise estimator or the MS noise estimator
instead of the model-based method in step 3 of the Algorithm
1. When applying the MMSE estimator and the MS estimator,
the estimation of the speech PSD is obtained by subtracting
the estimated noise PSD from the noisy signal PSD.

In the first experiment, we evaluate the convergence perfor-
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mance of the distributed VAD at different microphones. We
consider babble noise here, and only inter-band information is
used in the VAD. Fig. 2 (a) shows the ROC curve of the 7th
microphone with different number of iterations of the random
gossip, and Fig. 2 (b) illustrates the performance of the 8th
microphone. We notice from Fig. 2 that the convergence speed
of the distributed VAD is different at different microphones.
The microphone with higher input SNR converges faster than
the one with lower input SNR. The reason is that the higher
input SNR at the microphones near the desired signal will lead
to better speech PSD estimate which will contribute to better
VAD performance.

In the next experiment, the VAD performance when using
different methods in the noise PSD estimate step is studied.
Each experiment is repeated 5 times by adding different types
of noise (babble, restaurant, exhibition, street and station).
The mean ROC curves at the 7th microphone are illustrated
in Fig. 3. The number of iterations of the random gossip
method is set to be 200. As comparison, we also test the
centralized MC-SPP based multichannel VAD. We set the
parameters the same as in [8]. As shown in Fig. 3, the model-
based distributed VAD performs better than the other three
methods. This is because the model-based noise PSD esti-
mation outperforms the MMSE and MS methods in tracking
non-stationary noise, which also contributes to a better VAD
performance. By comparing Fig. 2 (a) with Fig. 2 (b), we
can notice that the detection performance gets slightly better
by taking into account the inter-frame information, especially
with the MMSE and MS based VAD methods.

VII. CONCLUSIONS

In this paper, we proposed a distributed multichannel VAD
by using the WASN. By taking advantage of the model-
based noise PSD estimation method, the proposed method are
able to obtain robust performance under non-stationary noise
condition. We formed the distributed VAD by using the GLRT
theory. And the global decision can be made by considering
the likelihood functions at all channels. Finally, the distributed
VAD can be obtained by solving the distributed averaging
problem. We utilized the random gossip as consensus method
to obtain the distributed optimization. The proposed detection
method does not need any fusion center. We studied the perfor-
mance of the distributed VAD under different noise conditions.
The experimental results showed that the distributed detection
method converged efficiently to the centralized solution, and
the performance was quite robust under different types of
non-stationary noise. It was also worthwhile noticing that the
proposed method outperformed the MMSE, MS based VAD
as well as the MC-SPP based method.
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