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On Optimal Filtering for Speech Decomposition
Alfredo Esquivel Jaramillo, Jesper Kjær Nielsen and Mads Græsbøll Christensen

Audio Analysis Lab CREATE, Aalborg University
Emails: {aeja, jkn,mgc}@create.aau.dk

Abstract—Optimal linear filtering has been used extensively for
speech enhancement. In this paper, we take a first step in trying
to apply linear filtering to the decomposition of a noisy speech
signal into its components. The problem of decomposing speech
into its voiced and unvoiced components is considered as an
estimation problem. Assuming a harmonic model for the voiced
speech, we propose a Wiener filtering scheme which estimates
both components separately in the presence of noise. It is
shown under which conditions this optimal filtering formulation
outperforms two state-of-the-art speech decomposition methods,
which is also revealed by objective measures, spectrograms and
informal listening tests.

Index Terms—Speech decomposition, time-domain filtering,
Wiener filter, voiced speech, unvoiced speech.

I. INTRODUCTION

The decomposition of speech into its major components,
i.e., voiced and unvoiced, is a challenge in many speech
processing applications. An accurate recovery of these compo-
nents is important in speech coding [1], analysis [2], synthesis
[3], enhancement [4], as well as for diagnosing illnesses [5].
The presence of noise is inevitable in most acoustic scenarios,
so a major challenging problem is the robust estimation of
both components in the presence of additive noise. This is
useful, for example, in remote voice assessment applications
[6], and therefore, for a proper diagnosis of voice pathologies.
Many clinical assesment systems have used sustained vowel
phonations to detect voice pathologies, and recently [7] the
need of assessing natural speech has been considered.

With the classical speech production model, speech is
classified as voiced or unvoiced depending on whether the
source is a periodic impulse or a white noise sequence [8].
However, specially for a good quality of synthetic speech, it
has been shown [9] that a mixed excitation can produce a
more natural sounding speech. This is the case for voiced
fricatives (e.g. /z/). Additionally, for clinical assessment of
voice impairment, it is necessary to take into account the
presence of the white noise source (i.e. unvoiced component)
in the vocal apparatus which results in breathy vowels and
other forms of vocal dysphonia [10].

Some efforts to separate the voiced and unvoiced com-
ponents from a speech signal have been developed. There
are methods which make a binary voiced/unvoiced decision
per frequency bin such as the one based on the multiband
excitation vocoder [1] and the harmonic plus noise (HNS)
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model [11], and methods [12], [13] which consider both
components can coexist in the speech frequency bands, which
is more accurate from a speech production perspective [12].
The well-known methods at this respect are an iterative method
for a periodic and aperiodic excitation decomposition [12]
and a pitch scaled harmonic filtering (PSHF) based method
[13]. The iterative method operates on an assumed mixed
excitation to the vocal tract by reconstructing the unvoiced
part excitation in the harmonic regions which are obtained
from the cepstrum. The PSHF method is based on a pitch-
scaled least-squares separation of the speech signal in the fre-
quency domain. These speech decomposition methods, which
decompose speech signals into stochastic and deterministic
components, do not take the presence of background noise
into account in the decomposition, and thus do not distinguish
between and deal with unvoiced speech and noise, which may
be present at the same time.

In the speech enhancement literature, a common approach to
estimate a clean signal corrupted by noise is optimal filtering,
such as the classical Wiener filter [14]. Traditionally, the filter
design requires estimates of the second-order statistics of the
noisy signal and the noise. In this paper, we investigate if
the speech decomposition problem can also be tackled via an
optimal filtering way. To use optimal filtering for decomposing
speech into its components, we need estimates of their second-
order statistics. To obtain these, we assume a periodic signal
model, namely the harmonic model, for the voiced component
[15], [16]. By assuming stationarity in a short time segment,
the statistics of the voiced component will depend on the
fundamental frequency, the number of harmonics and the
power of the harmonics. If the noise is stationary, its statistics
can be estimated during periods where no voice activity is
detected. Otherwise, they can be obtained through the principle
of minimum tracking [17], for example. Knowing the statistics
of the voiced part, of the noise and those of the observed
signal, the statistics of the unvoiced part can be estimated, and,
therefore, a Wiener filter can be employed to extract separately
the voiced and unvoiced component.

The remainder of the paper is structured as follows. Section
II introduces the signal model, the assumptions and the opti-
mal filtering formulation. Section III establishes the proposed
filtering approach and details the main parts of the statistics
estimation for each of the components. Section IV gives the
performance measures and the experimental results. Finally,
the paper is concluded in section V.



II. SIGNAL MODEL AND PROBLEM FORMULATION

The speech decomposition problem considered in this paper
is to extract both the zero-mean voiced v(n) and unvoiced
u(n) components, from the noisy observation y(n), i.e,

y(n) = s(n) + z(n) = v(n) + u(n) + z(n), (1)

where n = 0, 1, . . . , N − 1 is the discrete-time index, s(n) =

v(n) + u(n) is the clean speech signal which is buried in a
zero-mean additive white or colored noise z(n). We assume
that the voiced and unvoiced parts as well as the noise are
uncorrelated.

When we adopt a linear filtering approach to recovering
the desired speech components, we consider the M recent
successive samples. Therefore, the signal model in (1) can be
expressed in a vector form as

y(n) = v(n) + u(n) + z(n), (2)

where y(n) = [y(n) y(n− 1) . . . y(n−M + 1)]T is a vector
of length M , [·]T denotes the transpose of a vector or matrix,
and v(n), u(n) and z(n) are defined in a similar way to y(n).
The objective of speech decomposition is to estimate one or
more samples of v(n) and u(n) from the noisy vector y(n) by
the application of two different optimal filters to the observed
signal vector, i.e.

v̂(n) =

M−1∑
k=0

hv,ky(n− k)

= hTv y(n) = hTv v(n) + hTv u(n) + hTv z(n),

(3)

û(n) = hTuy(n) = hTuu(n) + hTuv(n) + hTu z(n) (4)

where hv = [hv,0 . . . hv,M−1]T , hu = [hu,0 . . . hu,M−1]T ,
and v̂(n), û(n) are estimates of v(n) and u(n) respectively.

For speech decomposition, the problem is to find the optimal
filters hv and hu which make the level of the undesired
components as small as possible while passing the desired
component with as little distortion as possible. The undesired
components are the sum of the two last right-hand terms of
(3) and (4).

With the assumption that v(n), u(n) and z(n) are uncor-
related, the M ×M covariance matrix of the observed signal
can be expressed as

Ry = E
[
y(n)yT (n)

]
= Rv + Ru + Rz, (5)

where E [·] denotes expectation, Rv = E
[
v(n)vT (n)

]
, Ru =

E
[
u(n)uT (n)

]
, Rz = E

[
z(n)zT (n)

]
are the covariance

matrices of v(n), u(n), and z(n), respectively.

III. OPTIMAL FILTERING AND STATISTICS ESTIMATION

By considering the error between the true voiced and the
estimated voiced component, i.e., ev(n) = hTv y(n) − v(n),
and the error between the true unvoiced and the estimated
unvoiced component, i.e. eu(n) = hTuy(n)− u(n), the mean-
squared-error (MSE) criteria can be defined as

Jv(hv) = E
[
e2v(n)

]
= σ2

v − 2hTvRvi1 + hTvRyhv, (6)

Ju(hu) = E
[
e2u(n)

]
= σ2

u − 2hTuRui1 + hTuRyhu (7)

where i1 is the first column of the M×M identity matrix IM ,
and σ2

v and σ2
u are the variances of v(n) and u(n), respectively.

If we take the gradient of each MSE with respect to hv and
hu, and equate the results to 0, we find the Wiener filters for
estimating the voiced and unvoiced speech components to

hv = R−1
y Rvi1, (8)

hu = R−1
y Rui1. (9)

To compute these filters, the different statistics in (5) are
required. In order to avoid problems over frame transitions
of the noisy signal, we adopt a recursive approach [18], in
which a short-term sample estimate and a moving average is
used for computing an estimate at the time frame n as

R̂y(n) = αyR̂y(n− 1) + (1− αy)R̄y(n), (10)

where 0 < αy < 1 is a forgetting factor and

R̄y(n) =
1

N −M + 1

N−M∑
n=0

y(n)yH(n). (11)

For the voiced part v(n), we use the harmonic model, i.e.

v(n) =

L∑
l=1

Al cos(lω0n+ φl), (12)

where L is the number of harmonics, ω0 is the fundamental
frequency, Al denotes the real amplitude of the lth harmonic
with its corresponding phase φl ∈ [0, 2π). As an extension to
the vector model in (2), the voiced signal vector is expressed
as v(n) = Za, with the definitions

a =
1

2
[A1e

jφ1 A1e
−jφ1 . . . ALe

jφL ALe
−jφL ]T , (13)

Z = [z(ω0) z∗(ω0) . . . z(ω0L) z∗(ω0L)], (14)

z(ω0l) = [1 ejlω0 . . . ejl(M−1)ω0 ]T . (15)

The voiced part covariance matrix Rv = E{v(n)vH(n)} =
E{(Za)(Za)H} can be expressed as Rv ≈ ZPZH [19],
where [·]H denotes complex conjugate transpose and the
amplitude covariance matrix P has the form [19]

P = E{aaH} =
1

4
diag([A2

1A
2
1 . . . A

2
LA

2
L]). (16)

Clearly, Rv depends on ω0, the model order L and the
amplitude vector a, which need to be estimated. The am-
plitude vector can be estimated using the principle of least-
squares [20] as â = (ZHZ)−1ZHy, and the fundamental
frequency and model order L are estimated by using a fast
nonlinear least squares (NLS) algorithm [21]. However, the
NLS method assumes that the signal is observed in white
gaussian noise, which is not always true in many real acoustic
cases. Therefore, after estimating the noise power spectral
density, a linear prediction scheme suggested in [22] is used to
prewhiten the noisy signal. Then, the fundamental frequency
is estimated from the prewhitened signal resulting in better
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Figure 1: Spectrograms of (a) the true voiced component, (b) the true
unvoiced component (concatenation of sounds in the order /f/, /t/, /s/,
/sh/, (c) the clean speech (true voiced plus true unvoiced), and (d)
the noisy speech with iSNR = 4 dB.

frequency estimates than without prewhitening, when dealing
with speech corrupted in colored noise.

As voiced speech is non-stationary across a segment of
length N , a similar recursive approach to (10) can be used
to smooth the voiced frame covariance matrix

R̂v(n) = αvR̂v(n− 1) + (1− αv)R̄v(n), (17)

where R̄v(n) = ZPZH and 0 < αv < 1 is another forgetting
factor. A noise estimator based on optimal smoothing and
minimum statistics [17], for example, can be used to estimate
Rz . From (5), after the voiced part and noise covariance
matrices are estimated, an estimate of the unvoiced component
covariance matrix at the time frame n can be computed as
R̂u(n) = R̂y(n)−R̂v(n)−R̂z(n). To ensure that this matrix
is positive definite, an eigenvalue decomposition is applied and
its negative eigenvalues are replaced with a very small positive
number [23].

IV. EXPERIMENTAL RESULTS.

In this section, the performance of the proposed filtering
approach (optimal) is compared to the iterative periodic-
aperiodic decomposition (ITER) [12] and the pitch scaled
harmonic filter (PSHF) [13] based method for noisy speech
signal decomposition. The state-of-the-art methods evaluated
their performance in a quantitative way only for synthetic
speech signals, since the individual speech components are not
available separately for real speech [24]. As it is difficult to
evaluate the quality of a given decomposition in an objective
way, we consider an intermediate approach, where we mix
fully voiced and fully unvoiced utterances, so that we know
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Figure 2: Spectrograms of (a) the estimated voiced component using
the proposed filtering approach, (b) the estimated unvoiced compo-
nent using the proposed filtering approach, (c) the voiced component
obtained by ITER algorithm, and (d) the unvoiced component by
PSHF method.

the ground truth components of speech. The mixing of the
two signals may not sound as natural as one would expect
for common speech, but it will allow us to compare the
decomposition performance with objective measures.

In the experiments, we consider five fully voiced utterances
[25] (4 male and 1 female) as a ground truth for the voiced
component, resampled to a sampling frequency of 8 kHz. In
Fig. 1(a), the spectrogram of the fully voiced female utterance
”Why were you away a year, Roy?” is shown. For the unvoiced
speech component, we consider the concatenation of five
sounds /sh/, /f/, /s/, /t/, /p/ from the audio recordings of a free
ebook about the full range of sounds used in general British
English pronunciation [26], also resampled to 8 kHz. These
sounds are either unvoiced fricatives or unvoiced stops [8]. As
can be seen from Fig. 1(b), this recording does lack a harmonic
structure and has the appearance of rectangular red patterns
instead of horizontal striations [8], which is representative of
unvoiced speech. The clean speech for the experiment is the
sum of the voiced speech and unvoiced speech, where different
combinations of the five voiced sentences and ten orderings
of the unvoiced sounds are considered, and the results will
be averaged across the different realizations. An example of a
clean signal, which contains both voiced and unvoiced parts,
is shown in Fig. 1(c). Three types of noise are considered:
white, street and babble. The recordings of the street and
babble noises are taken from the AURORA database [27]. In
Fig. 1(d), is shown the noisy speech spectrogram, which is
formed by adding babble noise to the clean speech, the input
SNR is 4 dB.
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Figure 3: Average measured LogSpectrum distortion (LSD), Itakura-Saito distance (ISD) and segmental SNR(segSNR) for the proposed
approach and state-of-the-art methods in different iSNRs and noise types. Comparison also includes the case of noisy speech as an estimate.

For the comparison, we add different types of noise to the
speech signal at certain iSNR, ranging from -5 dB to 12 dB,
two different noisy realizations at each iSNR are considered
for each possible combination of voiced and unvoiced speech.
For the proposed approach, the segment length is set to N =
200 and the filter length to M = 25, the forgetting factors
to αy = αv = 0.75 in the white noise scenario and αy =
αv = 0.96 in the street and babble noise scenario. The noise
statistics are estimated using the minimum statistics (MS) [17]
principle.

The spectrograms of the voiced and unvoiced component
obtained by optimal filtering principle application, for the case
of speech in babble noise (Fig. 1(d)), are shown in Fig. 2(a)
and (b), the voiced component obtained by the ITER algorithm
in Fig. 2(c) and the unvoiced component which results from
the PSHF method in Fig. 2(d). The spectrogram in Fig. 2(b)
shows that the herein developed approach generates an un-
voiced estimated component which looks more similar to the
original unvoiced speech signal (opposed to that of Fig. 2(d)
in the sense that its spectrogram has similar red patterns
as opposed to the PSHF method, which looks distributed
in other frequency bins. Similar observations can be made
with the ITER method. Even if some frequency bins do not
appear in the spectrogram, informal listening tests reveal that
the unvoiced stops or sounds can be perceived, so the main
features of the unvoiced component are preserved.

The decomposition performance was evaluated quantita-
tively in terms of segmental SNR (segSNR), Itakura-Saito
distance (ISD), [28] and LogSpectrum Distortion (LSD) [29].
Due to space constraint, we here show the result at each

iSNR averaged across the different realizations and across all
the three noise types. The results are plotted in Fig. 3. The
comparison also includes the case of the noisy speech as an
estimate, in order to see if the methods perform better or worse
than the case of no processing of the noisy speech at all. Next,
we describe what can be observed from the different plots of
Fig. 3.

The presented approach not only outperforms the other two
in terms of segSNR for unvoiced speech, but it also results in
a better measure against the case in which the noisy speech is
considered as an estimate. This does not happen for the other
methods, whose performance is below the curves of noisy
speech as an estimate. In fact, as can be seen from Fig. 2(d),
the other methods show low-frequency content which is not
present in the true unvoiced speech component, and that results
in more signal content than this ground truth. The informal
listening of their outputs does not allow to perceive all the
unvoiced sounds, and some remaining of the female sentence
with a high level of distortion can be listened in these unvoiced
estimates. This does not occur by decomposing speech with
the optimal filtering approach, in which the different unvoiced
fricative and stop sounds can be perceived. In the white noise
case for the ITER method, all the phonemes are lost, and for
the PSHF method, only one of the phonemes is preserved, but
in a very distorted manner. Much lower values of LogSpectrum
distortion (LSD) and lower Itakura-Saito (ISD) distance values
are also obtained with the optimal filtering formulation.

In the voiced speech case, the optimal filtering approach
results in higher segSNR than the ITER method, and similar
values with respect to the PSHF method at all iSNRs. It is



important to mention that babble noise is one of the most
difficult noise types to remove, since it is highly nonstationary
and contains similar spectral content to speech. In this paper,
we considered the noise statistics estimated with the default
settings of the minimum statistics approach [17], but in a
future improvement, the developed principle herein can be
combined with a codebook-based approach [30], in order to
get better estimates of the noise statistics. With respect to the
Itakura-Saito distance (ISD), the ISD of the voiced component
obtained by the optimal filtering formulation is lower than
the other methods. This measure is more perceptually relevant
than the segSNR [28]. The spectrogram of the voiced com-
ponent processed by the ITER algorithm reveals some higher
frequency components (>3000Hz), which were not present in
the true voiced speech, and also some harmonics below this
frequency range, which were not present in the original speech.
Informal listening test reveals that the voiced output of the
ITER algorithm sounds more artificially distorted than the one
obtained from the optimal filtering principle. For the developed
approach, although the voiced estimate (Fig. 2(a)) has still
some noise present, it preserves the original features of the
ground truth and sounds less distorted than the other methods.
Finally, with the optimal filtering decomposition approach, we
observe similar LogSpectrum distortion (LSD) values to the
PSHF method for all iSNRs, and the proposed approach also
has lower LSD values than the ITER method. Even if LSD and
segSNR are similar for both approaches (optimal and PSHF),
the ISD of the voiced PSHF estimate is higher for low SNRs.

V. CONCLUSIONS.
In this paper, we have considered the speech decomposition

problem employing the principle of optimal filtering with
the corresponding statistics estimation for each one of the
components of the noisy observation. We investigated if the
presented approach is more robust and convenient for speech
decomposition in noisy conditions. Based on the informal lis-
tening tests, spectrogram analysis and the objective measures,
we found that the optimal filtering approach seems to work
well.
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