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Abstract—The recent advances in light field acquisition and
rendering technologies have attracted a lot of interest from
the scientific community. Due to their large amount of data,
efficient compression of light field content is of paramount
importance for storage and delivery. Quality evaluation plays
a major role in assessing the impact of compression on visual
perception. In particular, subjective methodologies for light field
quality assessment must be carefully designed to ensure reliable
results. In this paper, we present and compare two different
methodologies to evaluate visual quality of light field contents.
Both methodologies allow users to interact with the content and
to freely decide which viewpoints to visualize. However, in the
second methodology a brief animation of the available viewpoints
is presented prior to interaction in order to ensure the same
experience for all subjects. The time and patterns of interaction
of both methods are compared and analyzed through a rigorous
analysis. Conclusions provide useful insights for selecting the
most appropriate light field evaluation methodology.

I. INTRODUCTION

The feature-rich representation offered by Light Field (LF)
photography promises new ways of interaction with real-life
scenarios in an immersive environment. Recent innovations
in acquisition and rendering of LF contents have fueled the
interest of the scientific community, due to the challenges that
this new representation brings. One of those challenges con-
sists in the large volume of data generated in the acquisition
process, which is demanding in terms of storage and trans-
mission. Thus, new compression solutions must be designed
to efficiently reduce the amount of data while preserving both
visual quality and immersive features. At the same time, new
subjective assessment methodologies must be designed and
thouroughly tested to evaluate the impact of compression,
representation, and rendering models on perceptual quality and
user experience.

Several studies have been devoted to subjective quality eval-
uation of LF contents. Paudyal et al. investigate the impact of
watermarking on visual quality of LF contents, and especially
the relationship between watermark strength and visual quality,
using Absolute Category Rating (ACR) [1]. Darukumalli et al.
examine the quality of experience associated to LF displays
in relation to zooming levels and regions of interest, using
ACR and Degradation Category Rating (DCR) [2]. Kara
et al. analyse the correlation between spatial and angular
resolution, and how reducing spatial resolution can improve
parallax perception [3]. In their previous work, the authors

have evaluated several coding approaches and their impact on
visual quality, using two different methodologies [4]. They
have also compared passive and interactive methodologies,
focusing on the impact of interaction on the collected scores
[5]. A preliminary study on interaction trends has also been
presented [6].

The enriched rendering made possible by LF imaging is
most easily explored by interacting with the contents, for
example by changing perspective or applying digital refocus-
ing. However, it has been shown that interaction may lead
to an increase in the variance of the collected scores, due to
the variation between user experiences [5]. Interaction still
remains a valuable feature in assessing the visual quality
of LF images, since it represents the most natural way of
consumption, letting users engage with the content. In such
realistic scenario, the analysis of user behavior can be further
considered to improve perceptual coding and objective metrics,
among others.

In this paper, we combine passive and interactive method-
ologies to ensure the same visualization experience for all
users, while still enabling interaction with LF contents. We
compare this visualization and interaction approach to a purely
interactive setup, in which no passive-like animation is pre-
sented to the subjects. Correlation is computed between the
obtained scores to see whether the results are statistically
different. Statistical analysis is carried out on the time of
interaction associated with the two approaches to examine how
user engagement is affected by the testing setup.

The remainder of the paper is organized as follows. Details
on how the experiment was designed and carried out, as well
as how the scores were processed and analysed, are presented
in section II. Results from the comparison are discussed in
section III, and conclusions are drawn in section IV.

II. EXPERIMENTAL TEST
A. Data preparation

Five LF contents in 10-bit raw lenslet format were
selected from a publicly available LF image dataset,
namely Bikes, Danger_de_Mort, Stone_Pillars_Outside, Foun-
tain_&_Vincent_2 and Friends_1 [7]. The central perspective
view from each content is shown in Figure 1.

Each lenslet image was devignetted, demosaiced, and trans-
formed into a stack of perspective views using the Light
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Fig. 1: Central perspective view from each content used in the test.

TABLE I: Values of refocusing slope for each content.

Slopes
Content 1 2 3 4 5 6 7 8 9 10 11
Bikes -0 8 6 4 2 0 2 4 6 8 10
Danger_de_Mort -0 8 6 4 2 0 2 4 6 8 10
Stone_Pillars_Outside -0 8 6 4 2 0 2 4 6 8 10
Fountain_&_ Vincent_2 -0 8 6 4 2 0 2 4 6 8 10
Friends_1 S5 4 3 -2 -1 0 1 2 3 4 5

Fig. 2: Order of perspective views for pseudo-temporal se-
quence used for coding.

Field toolbox v0.4 [8], [9]. From the lenslet image, 15 x 15
perspective views were generated, each having a resolution
of 625 x 434 pixels. To serve as input for the compression
algorithms, the perspective views were padded with black
pixels, converted to YCbCr format and downsampled from 444
to 422, 10-bit depth. They were then arranged in a pseudo-
temporal arrangement following a serpentine order, as depicted
in Figure 2, and saved in yuv file format.

Two codecs were adapted for compression of LF. The first
selected codec was HEVC. The contents were encoded using
the software implementation x265', with the Main10 profile.
The Quantization Parameters (QP) were selected to match the
desired compression ratios. VP9 was used as second codec to
compress the pseudo-temporal sequence’. The target bitrate
was chosen to match the corresponding compression ratios
defined below. Details about the software specifications, and
QP and target bitrate selection can be found in [6].

The performance of the codecs was evaluated on four

Thttps://www.videolan.org/developers/x265.html
Zhttps://www.webmproject.org/vp9/

bitrates, namely R1 = 0.75 bpp, R2 = 0.1 bpp, R3 = 0.02
bpp, R4 = 0.005 bpp. The bitrates are computed by dividing
the size of the compressed bitstream over the size of the
uncompressed raw images (5368 x 7728 pixels).

B. Subjective Methodology

To perform the subjective visual quality assessment, the
Double Stimulus Impairment Scale (DSIS) methodology with
5-point grading scale (5: Imperceptible, 4: Perceptible but
not annoying, 3: Slightly annoying, 2: Annoying, 1. Very
annoying) was selected, based on ITU-R Recommendation
BT.500-13 [10].

The test stimuli were displayed side-by-side with the un-
compressed reference, using the framework proposed in [6].
Due to distorsions naturally occurring in lenslet-based LF
content, some of the perspective views were excluded from the
test, since they would negatively bias subjects. Hence, only the
central 9 x 9 perspective views out of the 15 x 15 views were
visualized in the test. Both reference and test contents were
converted to png file format in 8 bits, due to limitations of
the display and the software. Each image was displayed in its
native resolution of 625 x 434 pixels. Eleven refocused images
of the central perspective view were additionally created for
each content, using a modified version of the toolbox function
LFFiltShiftSum that uses the central 11 x 11 perspective views
to create a larger depth of field. The function uses a parameter,
called slope, to define the plane where the refocusing will
be applied. The slopes were selected so as to assure gradual
transition between refocusing on the foreground and on the
background with respect to semantically relevant objects in
each content. The values of the slopes are summarized in Table
L.

The experiment was divided in two sessions, corresponding
to two different visualization and interaction approaches. In
the first session, the participants could directly interact with
the perspective and refocused views. For each stimulus, the
central perspective view of the test and reference content was
initially displayed, in a side-by-side fashion. By clicking inside



either displayed image and dragging the mouse, the other
perspective views could be accessed. Additionally, participants
could access the refocused images through a slider shown
between test and reference, or by double clicking on the point
of the image they wished to see in focus. In the second
session, participants were first shown an animation of all
possible perspective and refocused views. The perspective
views were shown in a serpentine order, to mimic natural
interaction with parallax effect (see Figure 2). Ten perspective
views per second were shown, to ensure a smooth transition.
At the end of the perspective views animation, the refocused
images were displayed at four frames per second, going from
foreground to background and from background to foreground
in a smooth transition. The total length of the animation was
13.6 seconds. After the animation was completed, interaction
was enabled, allowing participants to change perspective and
refocused views as in the first session. No grading was possible
before the end of the animation.

Participants were asked to rate the quality of the test
stimuli, compared to the uncompressed reference. Before the
experiment, a training session was established to acclimatize
participants with artefacts and distorsions in the test images.
Four training samples, created by compressing one additional
content from the dataset on various bitrates, were manually
selected by expert viewers, and displayed along with the
uncompressed reference.

Randomization was applied on the display order of the
stimuli, independently for each session, and the same content
was never displayed twice in a row. As each subject took part
in both sessions, a break of ten minutes was enforced between
the sessions to prevent fatigue.

A laboratory for subjective video quality assessment, set up
according to ITU-R Recommendation BT.500-13 [10], was
used for the test. In particular, a Samsung SyncMaster2443
monitor of 24 inches and native resolution of 1920 x 1200
pixels was employed. The monitor settings were calibrated
according to the following profile: sSRGB Gamut, D65 white
point, 120 cd/m? brightness, and minimum black level of 0.2
cd/m?. The controlled lighting system in the room included
neon lamps with 6500 K color temperature, while the color
of the background walls was mid grey. The illumination level
measured on the screens was 15 lux. The distance of the sub-
jects from the screen was approximately equal to 7 times the
height of the displayed images, according to requirements in
ITU-R Recommendation BT.2022 [11]. Subjects were allowed
to move further or closer to the screen.

A total of 21 naive subjects (9 males and 12 females)
participated in the test, for a total of 21 scores per stimulus.
Subjects were between 18 and 35 years old, with a mean age
of 22.3 years at the moment of the test. Before the experiment,
all subjects were examined for visual acuity and color vision
using Snellen and Isihara charts, respectively.

C. Score Processing

Outlier detection and removal was performed on the col-
lected scores, according to ITU-R Recommendation BT.500-

13 [10]. One outlier was detected, leading to 20 scores
per stimulus. After removing the outlier, the Mean Opinion
Score (MOS) and the corresponding 95% Confidence Intervals
(CIs) were calculated for each stimulus, separately for each
visualization and interaction approach, assuming a Student’s
t-distribution.

The total time each subject spent on interacting with the
perspective and refocused views was computed, following [6],
using the formulas:
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Ppij= Z Zpk’,u,v,i,j7 (D

u=1v=1
S

Ry = Zrk,s,i,ja ()

s=1
where p and r are the seconds spent on each perspec-
tive and refocused view, respectively, v = 1,2,...,U and
v = 1,2,...,V are the indexes of each perspective view,
s = 1,2,...,8 is the index of each refocused view, i =
1,2,..., N indicates the subject, j = 1,2,..., M indicates
the stimulus, and & = I, A indicates the visualization and

interaction approach (I indicating interaction, as used in the
first session, and A indicating animation, as used in the second
session).

The results were then aggregated to get the total time each
subject spent on each stimulus:

Trij=Prij+ Riij. 3

Finally, the results were averaged across the subjects to
obtain their general trend:

1L
Pij = > Prijo €
=1
1
Rij =D Buij. (5)
i=1
1L
Ty = i ZTk,i,j~ (6)
=1

D. Statistical Analysis

To gain insights on the correlation between the two visual-
ization and interaction approaches, statistical analysis was per-
formed on the subjective scores obtained in the two sessions.
In addition, correlation between the number of seconds spent
on average on perspective and refocused views, along with the
total number of views, was performed for each stimulus (P ;,
Ry ; and Ty ;, respectively). For simplicity, from now on we
will refer to Py, j, Ry ; and T}, ; as tracking values.

First and third order fittings were applied to the MOS and
the tracking values obtained with the two approaches, follow-
ing the ITU-T Recommendation P.1401[12]. Absolute predic-
tion error (RMSE), Pearson correlation coefficient, Spearman’s
rank correlation coefficient and Outlier ratio were computed
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Fig. 3: Comparison of MOS and tracking values obtained with different visualization and interaction approaches, along with
linear and cubic fittings. Points are differentiated by compression ratio.

for accuracy, linearity, monotonicity and consistency, respec-
tively.

III. RESULTS

Figure 3 shows the scatter plots comparing the MOS and
tracking values obtained with the two visualization and inter-
action approaches. The horizontal and vertical bars represent
the CIs corresponding to the values shown in the horizontal
and vertical axes, respectively. To improve visualization, points
were divided by compression ratio. Additionally, linear and
cubic fitting are shown for each comparison. Table II shows the
performance indexes, computed on the data pairs [X 4, X5],
in which {A, B} = {I, A} indicates the two visualization
and interaction approach and X = {MOS, P, R, T} represent
the value under comparison. X 4 are the values obtained with
approach A after linear and cubic fitting, while Xp are the
values obtained with approach B.

As shown in Figure 3 (a) and (e), the MOS values lie
on a 45° line, indicating that under identical conditions, the
two visualization and interaction approaches tend to give the
same value. One-way ANOVA performed on the MOS results
grouped by visualization and interaction approach confirms
that they are statistically equivalent (p = 0.9602). Thus, it
can be concluded that choosing one approach over the other
is not likely to affect the collected scores. Values of Pearson
and Spearman’s rank coefficients (> 0.99) further validate the
linear correlation between the MOS scores obtained with the

two approaches. The results validate the use of interaction-only
methodologies as opposed to passive approaches, as having the
same visualization experience does not seem to contribute to
any change in the scores.

Figures 3 (b) and (f) show the results of the comparison
between the tracking values related to the perspective views
Pr and P4. It can be immediately observed that, on average,
subjects spent more time interacting with the perspective views
in the purely interactive approach, while in the second ap-
proach the average interaction time is noticeably reduced. This
is easily explained considering that, in the second approach,
subjects were already exposed to the collection of perspective
and refocused views for almost 14 seconds. Values of Pearson
and Spearman’s rank coefficients indicate that P; and Pa
are not strongly correlated, as seen in Table II. A slight
improvement can be observed in the case of R; and R4,
which present a stronger correlation (Figures 3 (c) and (g)).
However, values of Pearson and Spearman’s rank coefficients
for T7 and T4 (Figures 3 (d) and (h))indicate that considering
the total time of interaction for the whole stimulus improves
the correlation (Pearson = 0.88, Spearman = 0.84 when
considering linear fitting).

In general, interaction trends show that, even when pre-
sented with an animation of all possible perspective and refo-
cused views, subjects still chose to interact with the content.
In particular, confirming a trend already seen in [6], it can
be seen that, for both approaches, subjects devoted more time



TABLE II: Performance indexes.

[MOS4, MOS;) [MOS;, MOS 4]
Pearson Spearman RMSE  Outlier Ratio | Pearson Spearman RMSE  Outlier Ratio
Linear fitting ~ 0.9922 0.9742 0.1697 5.00% 0.9922 0.9742 0.1696 2.50%
Cubic fitting 0.9923 0.9742 0.1692 5.00% 0.9927 0.9742 0.1643 5.00%
[Pa, Pi] [Pr, Pa]
Pearson Spearman RMSE  Outlier Ratio | Pearson Spearman RMSE  Outlier Ratio
Linear fitting  0.7652 0.7066 1.1281 0.00% 0.7652 0.7066 1.8827 7.50%
Cubic fitting 0.7738 0.7017 1.1100 0.00% 0.8065 0.7066 1.7291 7.50%
[Ra, Ri] [Rr, Ra]
Pearson Spearman RMSE  OQutlier Ratio \ Pearson Spearman RMSE  Outlier Ratio
Linear fitting ~ 0.8068 0.7856 1.0469 0.00% 0.8068 0.7856 1.9696 0.00%
Cubic fitting 0.8079 0.7856 1.0441 2.50% 0.8411 0.7856 1.8030 0.00%
[T, 1] [T1,Ta]
Pearson Spearman RMSE  Outlier Ratio \ Pearson Spearman RMSE Outlier Ratio
Linear fitting ~ 0.8805 0.8400 1.5315 2.50% 0.8805 0.8400 2.8113 10.00%
Cubic fitting 0.8823 0.8400 1.5202 2.50% 0.8960 0.8400 2.6327 7.50%
interacting with contents compressed at higher bitrates, while REFERENCES

for lower bitrates the time of interaction was limited. For
example, refocused views of contents compressed at the lowest
bitrate were almost never accessed when using the second
approach. The results can be explained considering that, for
low bitrates, artefacts are more easily detected; hence, less
time is needed for subjects to decide on the score. Moreover,
interaction with low quality contents is less likely to be a
pleasant experience, which may explain why subjects chose
not to engage with that type of content. On the other hand,
a more careful inspection may be needed to detect artefacts
in contents compressed at higher bitrates. In this case, the
animation alone may not be sufficient for subjects to decide
which score to assign.

IV. CONCLUSIONS

In this paper we described the result of a comparison
between two interactive approaches for subjective quality
evaluation of light field images. Results show that the subjec-
tive scores obtained with the two approaches are statistically
equivalent. Although the average time of interaction is sensibly
decreased when presenting subjects with an animation prior
to the interaction, statistical analysis proves that the tracking
values obtained with the two approaches are well correlated.
Moreover, it is shown that for both approaches, subjects spent
more time interacting with contents compressed with higher
bitrates, while for lower bitrates the total time of interaction
noticeably decreased.
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