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ABSTRACT

Linear beamformers are optimal, in a mean square (MS)
sense, when the signal of interest (SOI) and observations
are jointly Gaussian and circular. When the SOI and ob-
servations are zero-mean, jointly Gaussian and non-circular,
optimal beamformers become widely linear (WL). They be-
come non-linear with a structure depending on the unknown
joint probability distribution of the SOI and observations
when the latter are jointly non-Gaussian, assumption which
is very common in radiocommunications. In this context,
a third-order Volterra minimum variance distortionless re-
sponse (MVDR) beamformer has been introduced recently
for the reception of a SOI, whose waveform is unknown, but
whose steering vector is known, corrupted by non-Gaussian
and potentially non-circular interference, omnipresent in
practical situations. However its statistical performance has
not yet been analyzed. The aim of this paper is twofold. We
first introduce an equivalent generalized sidelobe canceller
(GSC) structure of this beamformer and then, we present an
analytical performance analysis of the latter in the presence of
one interference. This allows us to quantify the improvement
of the performance with respect to the linear and WL MVDR
beamformers.

Index Terms— Beamformer, non-circular, non-Gaussian,
higher order, interferences, MVDR, Volterra, widely non lin-
ear, widely linear, third order, fourth order, sixth order.

1. INTRODUCTION

The conventional time invariant linear beamformers, such as
the Capon beamformer [1], are only optimal for stationary
Gaussian observations whose complex envelope is necessar-
ily second-order (SO) circular. However in many applications
such as in radiocommunications, signals are non-Gaussian
and non-circular either at the SO and/or at a higher order
(HO) [2]. For this reason, several non-linear beamformers
have been proposed in the literature. A widely linear [3]
MVDR beamformer has been introduced in [4] to improve
the performance of the Capon beamformer in SO noncircular
contexts. A third-order Volterra GSC [5] structure has been

proposed in [6] to improve the performance of the Capon
beamformer in non-Gaussian contexts, without taking into
account the potential non-circularity of interference. Then a
family of third-order Volterra MVDR beamformers [7] which
takes into account both the potential non-Gaussian character
and the potential SO, fourth-order (FO) and sixth-order (SIO)
non-circularity of interference has been presented. But these
beamformers have been implemented by an intricate GSC
structure and their performance have been presented only by
numerical illustrations.

In this context, the first purpose of this paper is to in-
troduce an alternative GSC structure of these beamformers
allowing much simpler implementations. The second pur-
pose is to present an analytical performance analysis of these
beamformers in the presence of interference. It has been
shown in particular that, depending on the SO, FO and SIO
interference statistics, some of these Volterra MVDR beam-
formers outperform the Capon beamformer for a circular
non-Gaussian interference, while some others, outperform
the WL MVDR beamformer for a non-circular non-Gaussian
interference.

2. HYPOTHESES AND PROBLEM FORMULATION

2.1. Hypotheses

We consider an array of N narrowband sensors and we denote
by x(t) the vector of the complex amplitudes of the signals at
the output of these sensors. Each sensor is assumed to receive
the contribution of an SOI corrupted by interference and a
background noise. Under these assumptions, the observation
vector x(t) can be written as follows

x(t) = s(t)s+ n(t) ∈ CN , (1)

where s(t) and s correspond to the complex envelope, as-
sumed zero-mean, and the steering vector, assumed perfectly
known, of the SOI respectively. The vector n(t) is the to-
tal noise vector, containing the background noise and the in-
terference, and assumed to be zero-mean, potentially non-
Gaussian and non-circular, and independent of s(t).



2.2. Problem formulation

The problem addressed in this paper is to estimate the un-
known signal s(t) from the observation x(t). It is well-
known [3] that the optimal estimate ŝ(t) of s(t), in a MS
sense, from the observation x(t), is the conditional expec-
tation E[s(t)|x(t)]. Note, that for respectively circular or
non-circular mutually Gaussian distributions of (s(t),x(t)),
this conditional expectation becomes linear or widely lin-
ear [3]. But for non-Gaussian distribution of (s(t),x(t)), the
derivation of this conditional expectation needs this distribu-
tion which is unknown in practice.

To approximate this conditional expectation, a particular
class of non-linear beamformers, the complex Volterra beam-
formers, has been introduced for the first time in [8, 9]. Then
a particular third-order Volterra beamformer, whose output is
defined by (2) has been proposed and briefly analyzed in [7].

y(t) = wH
1,0x(t) +wH

1,1x
∗(t)

+wH
3,0[x(t)⊗x(t)⊗ x(t)]+wH

3,1[x(t)⊗x(t)⊗ x∗(t)]

+wH
3,2[x(t)⊗x∗(t)⊗ x∗(t)]+wH

3,3[x
∗(t)⊗x∗(t)⊗ x∗(t)]

def
= w̃H x̃(t), (2)

where ⊗ denotes the Kronecker product. In (2), the third-
order terms x3,q(t)

def
= [x(t)⊗(3−q) ⊗ x∗(t)⊗q], q = 0, 1, 2, 3

are called cubic (C) terms and q are their indexes. The
beamformers containing the linear term and the cubic terms
q1, q2, .., qr are called L-C(q1, q2, .., qr) and those containing
the WL terms and the cubic terms q1, q2, .., qr are called WL-
C(q1, q2, .., qr). Note that only the L-C(1) beamformer have
been considered in [6].

3. THIRD-ORDER VOLTERRA MVDR
BEAMFORMER

To impose no distortion on s(t) at the output y(t), the spatial
filters of the first order terms of (2) must verify the constraints:

wH
1,0s = 1 and wH

1,1s
∗ = 0.

To obtain the constraints on the cubic terms, we must decom-
pose the random variable n(t) on a fixed orthogonal basis
(s,u1, ...uN−1) of CN : n(t) = n0(t)s+

∑N−1
i=1 ni(t)ui. To

cancel the SOI contributions in the cubic term wH
3,qx3,q(t), it

is equivalent to cancel all the terms of wH
3,qx3,q(t) excluding

the terms containing the ui’s only. For example, for q = 1, we
must impose the 1+3(N−1)+3(N−1)2 = N3− (N−1)3

constraints:

wH
3,1(s⊗ s⊗ s∗) = 0

wH
3,1(ui ⊗ s⊗ s∗) = 0, wH

3,1(s⊗ ui ⊗ s∗) = 0,

wH
3,1(s⊗ s⊗ u∗

i ) = 0, 1 ≤ i ≤ N − 1

wH
3,1(ui ⊗ uj ⊗ s∗) = 0, wH

3,1(ui ⊗ s⊗ u∗
j ) = 0,

wH
3,1(s⊗ ui ⊗ u∗

j ) = 0, 1 ≤ i, j ≤ N − 1, (3)

or equivalently CH
1 w3,1 = 0N3−(N−1)3 . For any other in-

dex q = 0, 2, 3, the constraints can be written as CH
q w3,q =

0N3−(N−1)3 and the global set of constraints takes the form:

CHw̃ = f , (4)

where C = Diag(s, s∗,C0,C1,C2,C3) and f is the vector
(1,0T

1+4[N3−(N−1)3])
T .

Thus the best SO estimate s(t) exploiting the noise statis-
tics only, corresponds to the output of the third-order Volterra
beamformer w̃MVDR which minimizes the time-averaged
output power, w̃HRx̃w̃ under the previous constraint.

w̃MVDR = arg{ min
CHw̃=f

w̃HRx̃w̃}, (5)

where Rx̃
def
=<E[x̃(t)x̃H(t)]> is the time-averaged corre-

lation matrix of x̃(t). As the extended observation x̃(t) has
redundant components for N > 1, Rx̃ is singular and con-
sequently the solutions of the constrained optimization prob-
lem (5) are difficult to derive (see e.g., [10, sec.19.3c]). To
solve this difficulty, an intricate equivalent GSC structure,
which transforms a constrained least MS problem to an un-
constrained least MS one, has been proposed in [7].

4. EQUIVALENT THIRD-ORDER VOLTERRA GSC
STRUCTURE

We present here a simpler equivalent GSC structure. It is
based on the existence of a full column rank matrix B:

B
def
= Diag(B1,0,B

∗
1,0,B3,0,B3,1,B3,2,B3,3), (6)

with B1,0
def
= [u1, ...,uN−1] and B3,q = [B

⊗(3−q)
1,0 ⊗B∗

1,0
⊗q],

q = 0, .., 3, whose columns span span(C)⊥, which implies
BHC = O[2(N−1)+4(N−1)3]×[2+4(N3−(N−1)3)]. Conse-
quently, any filter w̃ that may be decomposed into two com-
ponents: w̃ = w̃f − ṽ where w̃f

def
= [wT

f ,0
T
N+4N3 ]T , such

that wf is an N × 1 filter satisfying wH
f s = 1, satisfies the

constraint (4) if and only if ṽ = w̃f − Bw̃a, where w̃a

is an unconstrained [2(N − 1) + 4(N − 1)3] × 1 vector.
Consequently, the constrained minimization problem (5) is
equivalent to the unconstrained one:

min
w̃a

< E|(w̃f −Bw̃a)
H x̃(t)|2 > . (7)

Using z̃(t)
def
= [zT (t), zH(t), [z(t) ⊗ z(t) ⊗ z(t)]T , [z(t) ⊗

z(t)⊗z∗(t)]T , [z(t)⊗z∗(t)⊗z∗(t)]T , [z∗(t)⊗z∗(t)⊗z∗(t)]T ,
where z(t) def

= BH
1,0x(t), it is straightforward to prove that (7)

is equivalent to the unconstrained minimization:

min
w̃a

< E|wH
f x(t)− w̃H

a z̃(t)|2 > . (8)

To solve easily this minimization (8), we have to withdraw
the redundancies in the 4 terms z3,q(t)

def
= [z(t)⊗(3−q) ⊗



z∗(t)⊗q] of z̃(t). This can be obtained by using selec-
tion matrices Kq such that z′3,q(t) = Kqz3,q(t). Con-
sequently z̃(t) can be replaced by z̃′(t) = Kz̃(t) with
K = Diag(IN−1, IN−1,K0,K1,K2,K3) and the mini-
mization (8) is equivalent to the minimization:

min
w̃′

a

< E|(wH
f x(t)− w̃

′H
a z̃

′
(t)|2 >, (9)

whose solution is

w̃
′

a,opt
def
= R−1

z̃′ Rz̃′,xwf =[KBHRx̃BKH ]−1KBHRx̃w̃f

= [KBHRñBKH ]−1KBHRñw̃f , (10)

where Rz̃′
def
=<E[z̃

′
(t)z̃

′H(t)]>, Rz̃′,x
def
=<E[z̃

′
(t)xH(t)]>.

The output y(t) of the GSC structure is then given by:

y(t) = wH
f x(t)− w̃

′H
a,optz̃

′
(t)

= s(t) +wH
f n(t)− w̃

′H
a,optKBH x̃(t)

= s(t) + (w̃f −BKHw̃
′

a,opt)
H ñ(t). (11)

wH
f − +

x(t)
yf (t)

def
= wH

f x(t) = s(t) +wH
f n(t)

y(t) = ŝ(t)

BH
1,0

z(t) = BH
1,0x(t)

K

w̃
′H
a,opt

z̃(t)

z̃′(t)
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GLC(0) = 1 +
α2β6ϵ4j |κj,nc,2 − 3γj |2

(1+ϵj)A0−α2β6ϵ4j |κj,nc,2−3γj |2
,(21)

GLC(1) = 1 +
α2β6ϵ4j (κj,c − 2)2

(1 + ϵj)A1 − α2β6ϵ4j (κj,c − 2)2
, (22)

GLC(2) =

1 +
α2β6ϵ4j |(κj,nc,2 − γj) + 2γj/(β

2ϵj)|2

(1+ϵj)A2−α2β6ϵ4j |(κj,nc,2−γj)+2γj/(β2ϵj)|2
,(23)

GLC(3) = 1 +
α2β6ϵ4j |κ2

j,nc,1|
(1 + ϵj)A3 − α2β6ϵ4j |κ2

j,nc,1|
. (24)

Expressions (14) to (17) and (21) to (24) of the SINR and
gain G of the considered L-C(q) MVDR beamformers depend
on the statistical properties of the interference and more pre-
cisely on the coefficients γj , κj,c, κj,nc,1, κj,nc,2 and χj,c.
Consequently many insights can be deduced from these ex-
pressions. In the following, we concentrate on the behavior
of these beamformers for a strong interference (i.e., ϵj ≫ 1):

For χj,c = κ2
j,c (which means that |j(t)| takes at most two

values corresponding to zero and a non-zero constant value)
and β ̸= 0, (15) and (22) become:

SINRLC(1) ≈ ϵs

(
1− α2(5κj,c − 4)

κj,c(κj,c+1)−α2(κj,c−2)2

)
(25)

GLC(1) ≈ 1 +
α2(κj,c − 2)2

κj,c(κj,c + 1)− α2(κj,c − 2)2
, (26)

In particular for CPM, FSK and non-filtered PSK interfer-
ence: SINRLC(1) ≈ ϵs[1 − α2/(2 − α2)] and GLC(1) ≈
1+α2/(2−α2). For impulsive interference, such that |j(t)| is
Bernoulli distributed and noting p

def
= P (|j(t)| ̸= 0), we can

verify that χj,c = κ2
j,c = 1/p2 and we obtain as p decreases

to zero, i.e., for very impulsive interference, SINRLC(1) ≈ ϵs
and GLC(1) ≈ 1 + α2/(1− α2). In this case, the SINR is the
one obtained in the absence of interference.

For χj,c = |κj,nc,2|2 (which means that j2(t) takes at
most two values corresponding to zero and a non-zero con-
stant value, and consequently that j(t) is necessarily rectilin-
ear) and β ̸= 0, (14), (16), (21) and (23) become:

SINRLC(0) ≈ ϵs(
1−

9α2(κj,c − |γ2
j |)

|κj,nc,2|2+9κj,c−6Re(γjκ∗
j,nc,2)−α2|κj,nc,2−3γj |2

)
(27)

SINRLC(2) ≈ ϵs(
1−

α2(9κj,c − |γ2
j | − 4Re(γjκ

∗
j,nc,2))

|κj,nc,2|2+9κj,c−6Re(γjκ∗
j,nc,2)−α2|κj,nc,2−γj |2

)
(28)

GLC(0) ≈

1+
α2|κj,nc,2 − 3γj |2

|κj,nc,2|2+9κj,c−6Re(γjκ∗
j,nc,2)−α2|κj,nc,2−3γj |2

(29)

GLC(2) ≈

1 +
α2|κj,nc,2 − γj |2

|κj,nc,2|2+9κj,c−6Re(γjκ∗
j,nc,2)−α2|κj,nc,2−γj |2

.(30)

In particular for a non-filtered BPSK interference:

SINRLC(0) ≈ ϵs, GLC(0) ≈ 1 +
α2

1− α2
(31)

SINRLC(2) ≈ ϵs(1− α2), GLC(2) ≈ 1. (32)

In this case, (32) shows that the L-C(2) MVDR beamformer
does not improve the Capon beamformer, whereas (31) shows
that the L-C(0) MVDR beamformer outperforms the Capon
beamformer by completely canceling the interference what-
ever α .

For χj,c = |κj,nc,1|2 (which means that j4(t) takes at
most two values corresponding to zero and a non-zero con-
stant value) and β ̸= 0, (17) and (24) become:

SINRLC(3) ≈ ϵs

(
1− 9α2κj,c

9κj,c+(1−α2)|κj,nc,1|2

)
(33)

GLC(3) ≈ 1 +
α2|κj,nc,1|2

9κj,c + (1− α2)|κj,nc,1|2
. (34)

In particular, for non-filtered BPSK and non-filtered QPSK
interference, we obtain:

SINRLC(3) ≈ ϵs

(
1− 9α2

10− α2

)
(35)

GLC(3) ≈ 1 +
α2

10− α2
, (36)

which proves that the L-C(3) MVDR beamformer improves
only slightly the Capon beamformer and remains less power-
ful than the WL beamformer for a rectilinear interference.

5.3. Performance of WL-C(q) and L-C(q1, q2) MVDR
beamformers

Closed-form expressions of GWL−C(q1)/GWL and GL−C(q1,q2)

are too intricate to derive. However, using symbolic math
toolboxes and the results of Section 5.2, it is possible to prove
in particular, that for a strong BPSK interference:

GWL−C(0)≈GWL−C(1)≈GWL−C(3)≈GL−C(0,1)≈GL−C(0)

≈1+
α2

1−α2
> GWL ≈ 1+

α2

2−α2
> GL−C(3)≈1, (37)

whereas for a strong QPSK interference:

GL−C(1,3) ≈ 1 +
α2

1− α2
> GL−C(1) ≈ 1 +

α2

2− α2

> GL−C(3)>GWL=GL−C(0)=GL−C(2)=1. (38)
This result shows in particular that in this latter case,

SINRL−C(1,3) ≈ ϵs, which proves the quasi-optimality
(among the beamformers which use the total noise statis-
tics only) of the L-C(1,3) MVDR beamformer for a strong
QPSK interference. Finally, let us note that in all cases,
the WL-C(0,1,2,3) MVDR beamformer reaches at least the
performance of the best WL-C(q1) and L-C(q1, q2) MVDR
beamformer and is thus quasi-optimal not only for strong
BPSK and QPSK interference but also for very impulsive
interference, circular or not.



5.4. Performance illustrations

We consider throughout this section a two-element array with
omnidirectional sensors and we assume that the SOI has a
signal to noise ratio (SNR) πs/η2, equal to 10dB. This SOI
is assumed to be corrupted by a single interference whose
interference to noise ratio (INR) πj/η2, is equal to 30dB.
Under these assumptions, Fig.2 displays, for a non-filtered
BPSK interference, the variations of SINRB at the output
of different MVDR beamformers. Note that this figure con-
firms the results (37), i.e., the equivalent performance of the
L-C(0) and WL-C(0) MVDR beamformers and the better
performance of the L-C(0) MVDR beamformer with respect
to the WL MVDR beamformer, itself better than the L-C(3)
MVDR beamformer, the latter being equivalent to the Capon
beamformer. Moreover, Fig.2 shows the very weak infor-
mation brought by the WL-C(0,1), WL-C(0,1,3) and WL-
C(0,1,2,3) MVDR beamformers with respect to the L-C(0)
or L-C(1,3) MVDR beamformers which are quasi-optimal.
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Fig.2 SINRB as a function of α, non-filtered BPSK interference.

Fig.3 displays the same variations as Fig.2, but for a QPSK
interference. Again, this figure confirms the results (38), i.e.,
the better performance of the L-C(1,3) MVDR beamformer
with respect to the L-C(1) MVDR beamformer, itself better
than the L-C(3) MVDR beamformer, itself better than the
Capon beamformer.
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Fig.3 SINRB as a function of α, non-filtered QPSK interference.

Fig.4 displays the variations of GB at the output of the differ-
ent MVDR beamformers as a function of α, for an impulsive
circular interference, such that |j(t)| follows a Bernoulli dis-
tribution with P (|j(t)| ̸= 0) = 0.001 associated with κj,c =
1000. This figure confirms that in this case, GLC(1) ≈ 1 +
α2/(1 − α2) is quasi-optimal for very high value of κj,c. As
a consequence, the beamformers L-C(1,3) and L-C(0,1,2,3)
bring no further gains with respect to L-C(1).
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Fig.4 GB as a function of α, circular Bernoulli impulsive interference.

6. CONCLUSION

An alternate equivalent GSC structure of a previously intro-
duced third-order Volterra MVDR beamformer has been pro-
posed. It permits both simpler implementations of this beam-
former and analytical SINR computations at its output, which
has been done in the paper. This analytical performance anal-
ysis allows us to specify how this beamformer outperforms
the Capon and the WL beamformers for respectively, circular
or not circular non-Gaussian interference, depending on the
SO, FO and SIO interference statistics.
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