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Abstract—This paper proposes a new colour transfer method
with Optimal transport to transfer the colour of a source image to
match the colour of a target image of the same scene. We propose
to formulate the problem in higher dimensional spaces (than
colour spaces) by encoding overlapping neighborhoods of pixels
containing colour information as well as spatial information.
Since several recoloured candidates are now generated for each
pixel in the source image, we define an original procedure
to efficiently merge these candidates which allows denoising
and artifact removal as well as colour transfer. Experiments
show quantitative and qualitative improvements over previous
colour transfer methods. Our method can be applied to different
contexts of colour transfer such as transferring colour between
different camera models, camera settings, illumination conditions
and colour retouch styles for photographs.

Index Terms—optimal transport, colour transfer, image en-
hancement, JPEG compression blocks.

I. INTRODUCTION

In the digital media post-production industry, colour transfer
methods have been developed to transform a source colour
image into a specified target colour image to match colour
statistics or eliminate colour variations between different
photographs. Colour variations between photographs often
happen due to illumination changes, using different cameras,
different in-camera settings or due to tonal adjustments of the
users. Applications in image processing problems range from
generating colour consistent image mosaicing and stitching [1]
to colour enhancement and style manipulation [2].

When computing the transfer function, considering colour
information only does not take into account the fact that
coherent colours should be transferred to neighboring pixels,
which can create results with blocky artifacts emphasizing
JPEG compression blocks, or increase noise. In this paper we
propose to extend the colour problem to higher dimensional
spaces by encoding overlapping neighborhoods of pixels,
taking into account both their colour and spatial information.
We solve the high dimensional problem in 1D space using an
iterative projection approach. Our method can be applied to
different contexts of colour transfer such as transferring colour
between different camera models, camera settings, illumina-
tion conditions and colour retouch styles for photographs.

This work is partly funded by a scholarship from Umm Al-Qura University,
Saudi Arabia, and in part by a research grant from Science Foundation
Ireland (SFI) under the Grant Number 15/RP/2776, and the ADAPT Centre
for Digital Content Technology (www.adaptcentre.ie) that is funded under the
SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under
the European Regional Development Fund.

II. RELATED WORKS

Optimal transport (OT) applications in imaging have been
widely studied in the last decade. The OT problem consists of
estimating the minimum cost (referred to as the Wasserstein
Distance [3], [4] or as the Earth Movers Distance [5]) of
transferring a source distribution to a target distribution. As
a byproduct of OT distance estimation, the mapping φ itself
between the two distributions is also provided.

Monge’s formulation of OT [4] defines the deterministic
coupling yc = φ(xc) between random vectors xc ∼ f(xc) and
yc ∼ g(yc) that capture the colour information of the source
and target images respectively, and its solution minimizes the
total transportation cost:

argmin
φ

∫
‖xc − φ(xc)‖2 f(xc) dxc (1.a)

such that : f(xc) = g(φ(xc)) |detOφ(xc)| (1.b)

with f the probability density function (pdf) of xc and g
the pdf of yc. The solution for φ can be found using existing
algorithms such as linear programming, and the Hungarian and
Auction algorithms [6]. However, in practice it is difficult to
find a solution for colour images when dim(xc) = dim(yc) =
d > 1 as the computational complexity of these solvers
increases in multidimensional spaces [3]. But for d = 1, with
xc, yc ∈ R, a solution for φ is straightforward and can be
defined using the increasing rearrangement [4]:

φ = G−1 ◦ F (2)

where F and G are the cumulative distributions of the colour
values in the source and target images respectively. The
1D solution in (2) has been used to tackle problems in
multidimensional colour spaces and of particular interest is
the Iterative Distribution Transfer (IDT) algorithm for colour
transfer proposed by Pitié et al. [7]. They proposed to itera-
tively project colour values {xci}ni=1 and {ycj}mj=1 originally in
Rd to a 1D subspace and solve the OT using (2) in this 1D
subspace and then propagate the solution back to Rd space.
This operation is repeated with different directions in 1D space
until convergence. This strategy was inspired by the idea of the
Radon Transform [8] which states the following proposition: if
the target and source colour points are aligned in all possible
1D projective spaces, then matching is also achieved in Rd
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space. Note that the implementation of IDT approximates F
and G using cumulative histograms1.

The Sliced Wasserstein Distance (SWD) algorithm was later
proposed, similarly using the iterative projection approach
of IDT, and was applied to texture mixing applications [9]
and colour transfer [10]. The SWD algorithm uses quantile
matching instead of cumulative histogram matching to solve
(2). More specifically, SWD sorts the n 1D projections of the
source and target images respectively to define quantiles with
regular increments of size 1

n between 0 and 1 for both source
and target distributions. IDT can also be considered as an
approximation of a quantile matching approach but with irreg-
ular increments derived from the cumulative histograms of the
source and target images - as source and target quantiles do not
match exactly, interpolation can be used to compute solution
(2) [8]. The SWD algorithm can be computed in O(n log(n))
operations using a fast sorting algorithm [9]. When a small
number of observations are available, using SWD is best but
with a large number of observations, histogram matching with
IDT is more efficient.

The warping map φ derived using the closed form (2)
has a number of important characteristics: it is parameter
free, no strong hypotheses are made about the distributions
(i.e. f and g), and by design it is an increasing function.
More importantly, it provides a tractable iterative solution for
imaging applications formulated in higher dimensional spaces
[10]. However, undesirable visual artifacts can be produced in
the output image and a post processing step is added to ensure
that the gradient field of the recoloured source image is as
close as possible to the original source image [8]. Similarly,
Bonneel et al. [10] use an iterative post-processing technique
[11] to regularize the transportation map.

III. PATCH-BASED COLOUR TRANSFER

We propose to solve colour transfer by encoding overlapping
neighborhoods of pixels, accounting for both colour informa-
tion as well as pixel location, and extending the problem to
higher dimensional space. We solve the transfer problem in 1D
space using an iterative projection approach. In our context, we
found that using the quantile matching approach that employs
sorting operations is better than the histogram technique. The
problem with building histograms is that the regular bin size
used for every projection must be chosen, and so to alleviate
the need to optimize the bin size parameter we choose the
sorting technique [10]. Due to overlapping regions in patches,
several recoloured candidates are now generated for each pixel
in the source image. Therefore, we also define an original
procedure to efficiently merge these candidates. Our method
consists of the following steps:

1. Combine colour and spatial information. Zhixin et al.
[12] have proposed to incorporate spatial information for
portrait relighting that transfers shading with awareness of
the face geometry in source and target images. Similarly we
propose to incorporate pixel positions with colour information

1https://github.com/frcs/colour-transfer
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Fig. 1: Overlapping patches to create points in higher dimensions
(best viewed in colour and zoomed in).

to take into account spatial information when recolouring same
content images. The pixel’s colour xc and its pixel position
xp are concatenated into a vector x = (xc, xp)T such that
dim(x) = dim(xc)+dim(xp). Adding this spatial information
extends Monge’s formulation in (1.a) such that φ(x) minimizes
the following cost:∫

(‖xc − φc(x)‖2 + ‖xp − φp(x)‖2) f(x) dx (3.a)

such that : f(x) = g(φ(x)) |detOφ(x)| (3.b)

where now f denotes the pdf of x and g the pdf of y in the
high dimensional space (Rd, where d = dim(x)). φc and φp
are the components of φ that return the transformed colour
and spatial features respectively.

2. Change the coordinate system. In the case when we
combine colour and spatial information, the colours have
integer values from 0 to 255, and the spatial values can be
anything depending on the size of the image. In order to
produce consistent results regardless of the size of the image,
we normalize all the colour and position coordinates to lie
between 0 and 255 to create a hypercube in Rd. We then
stretch that space in the direction of the spatial coordinates by
a factor w = 2.5 to make it harder to move the pixels in the
spatial domain than in the colour domain, because since we
are focusing on transferring colour between images of a same
scene, we know that the scenes are overlapped.

3. Create patch vectors. We encode overlapping neigh-
borhoods of pixels to preserve local topology information.
Starting from the origin of the coordinate system of the images
(upper left corner), we use a sliding window operation of
window size k × k to extract overlapping patches. From
each individual patch we create a high dimensional vector
in Rd×k×k by concatenating the pixels in the patch with
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their d dimensional features (colour values only such that
x = (xc)T Fig. 1 (A), or colour and spatial features such
that x = (xc, xp)T Fig. 1 (B)). We apply this process to the
source and target images to create patch vector sets {xi} and
{yj} for each respectively. Note, the formulation that includes
spatial information favors local mapping between patches such
that it penalizes mappings between patches that are spatially
distant from each other even if their colours are similar.

4. Iterative projection transfer. The sorting operation from
the SWD algorithm [10] is used as follows: let x(t) represents
the high dimensional source point in Rd×k×k at iteration t. At
each iteration, we generate a random orthogonal basis for the
Rd×k×k space and project the source and target points onto
these axes. Along each axis, φ is estimated and then applied
to the source points to create an intermediate value x̂(t+ 1).
In SWD the final modified source points at the t+1 iteration
are obtained by taking a partial step with α=0.2 such that
x(t+1) = (1−α) x(t) + α x̂(t + 1). We have chosen here
α=1 to get an updating step similar to Pitié et al [7], hence
not enforcing any pulling constraint on the transfer function
towards the identity as Bonneel et al. [10]. After convergence,
we retain only the transformed colour information (the φc(x)
component of φ) and discard any changes in positions (φp(x)).

5. Merge recoloured candidates. Because of the overlapping
regions between patches, several recoloured candidates are
now generated for each pixel in the source image. We compute
the average colour value from the candidates and use it in
conjunction with the original position to create the output
recoloured image.

IV. EXPERIMENTAL ASSESSMENT

We provide quantitative and qualitative evaluations to validate
both of our optimal transport solutions - using colour patches
only, annotated in the results as Our c, and using colour
patches with spatial information, annotated as Our cp. We
compare our methods to different state of the art colour
transfer methods [2], [8], [13], [14]. In these evaluations
we use image pairs with similar content from an existing
dataset provided by Hwang et al.2 [2]. The dataset includes
registered pairs of images (source and target) taken with
different cameras and settings, and different illuminations and
recolouring styles.

A. Colour space and parameters settings

We use the YCbCr colour space because of its ability to decor-
relate colour channels. We transform the luminance (Y) and
chrominance (CbCr) components separately and recombine
the resulting recoloured sources (Y and CbCr) to create the
final recoloured source image. For Our cp, when processing
chrominance, each pixel is represented by its 2D chrominance
(CbCr) value and its 2D spatial position. When processing
luminance, each pixel is represented by its 1D luminance (Y)
values and its 2D spatial position. The spatial information

2https://sites.google.com/site/unimono/pmls

corresponds to the position coordinates of the pixel in the
image, with the origin of the coordinate system in the upper
left corner (Fig. 1). Our patches with combined colour and
spatial features create a vector in 75 dimensions (3×5×5) for
the luminance and position component, and 100 dimensions
(4 × 5 × 5) for the chrominance and position component.
For Our c, pixel position is not accounted for, and only
chrominance and luminance are used. When creating patch
vectors, we experimented with different patch sizes and found
that a size of 5×5 captures enough of a pixel’s neighbourhood
and does not increase computational complexity too much. The
code we used to implement our method is available online3.

B. Evaluation metrics

To quantitatively assess the recolouring results, four metrics
are used: peak signal to noise ratio (PSNR) [15], structural
similarity index (SSIM) [16], colour image difference (CID)
[17] and feature similarity index (FSIMc) [18]. These metrics
are often used when considering source and target images of
the same content [2], [14], [19], [20]. Although the registration
errors may affect the evaluation metrics, the measures for
different methods were computed using the same registration
errors. Note that the results using PMLS were provided by the
authors [2]. We also compared PMLS with two other recent
techniques [21], [22] that also incorporate correspondences
into their framework, but PMLS has been shown to perform
better than these two [13] and so is the one reported here.

C. Experimental Results

Table I presents the quantitative results. Our method with
colour and spatial information (Our cp) outperforms other
state of the art methods in most cases as measured by CID
and FSIMc and performs similarly to other top methods PMLS
and L2 as measured by the PSNR and SSIM metrics.

Figure 2 provides qualitative results. For clarity, the results
are presented in image mosaics, created by switching between
the target image and the transformed source image column
wise (Figure 2, top row). If the colour transfer is accurate, the
resulting mosaic should look like a single image (ignoring the
small motion displacement between source and target images),
otherwise column differences appear. As can be noted, our
approach Our cp is visually the best at removing the column
differences.

While PMLS provides equivalent results to our methods
in terms of metrics, it introduces visual artifacts if the input
images are not registered correctly (Figure 3), while our
method is robust to registration errors. Note that although the
accuracy of the PSNR, SSIM, CID and FSIMc metrics relies
on the fact that the input images are registered correctly; if
this is not the case, these metrics may not accurately capture
all artifacts (Figures 3 and 2). In addition, due to the merging
step of our algorithm (cf. step 5 Sec. III), our approach allows
us to create a smooth colour transfer result, and can also
alleviate JPEG compression artifacts and noise (cf. Figure 3
for comparison).

3https://github.com/leshep/PCT OT
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Fig. 2: Qualitative evaluations (best viewed in colour and zoomed in). The top result is processed with our technique Our cp.

pl
ay

gr
ou

nd
ill

um
bu

ild
in

g
m

ar
t

              Source                           Target                      PMLS                          L2                           Our_c                       Our_cp

Fig. 3: A close up look at some of the results generated using the PMLS, L2 and our algorithms (best viewed in colour and zoomed in).

Our method Our cp can also correctly transfer colours
between images that contain moving objects, as can be seen in
Figure 3 with examples ‘illum’ and ‘mart’. However, Our cp
can create shadow artifacts when there are large changes
between target and source images (Figure 3 in example
‘building’). In this case Our c does not suffer from these
shadow artifacts and creates good colour transfer results. In
the future, we would like to create a hybrid framework that
integrates both Our c and Our cp and switches between the
two using the parameter w. A motion estimation technique
can be used to determine which pixels in the source image
have moved in the target image. With pixels affected by large
motion, the position’s weight would be set to w = 0, making

the algorithm account for Our c only. When pixels move less,
the position’s weight would be set to w = 2.5, making the
algorithm account for Our cp.

V. CONCLUSION

Several contributions to colour transfer witinh OT have been
made in this paper, showing quantitative and qualitative im-
provements over state of the art methods. In particular, first,
neighborhoods of pixels (patches) are used with OT algorithm
in high dimensional space, and second, spatial information as
well as colour content of pixels are both encoded in the high
dimensional feature vectors. This original construction implies
a new reconstruction step since each recoloured pixel benefits
from the contribution of several estimated candidates using a
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simple averaging solution which allows denoising and artifact
removal as well as colour transfer.
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