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Abstract—Standard methodologies for functional Magnetic
Resonance Imaging (fMRI) data analysis decompose the observed
Blood Oxygenation Level Dependent (BOLD) signals using voxel-
wise linear model and perform maximum likelihood estimation to
get the parameters associated with the regressors. In task fMRI,
the latter are usually defined from the experimental paradigm
and some confounds whereas in resting-state acquisitions, a seed-
voxel time-course may be used as predictor. Nowadays, most
fMRI datasets offer resting-state acquisitions, requiring multi-
variate approaches (e.g., PCA, ICA, etc) to extract meaningful
information in a data-driven manner. Here, we propose a novel
low-rank model of fMRI BOLD data but instead of considering
a dimension reduction in space as in ICA, our model relies on
convolutional sparse coding between the hemodynamic system
and a few temporal atoms which code for the neural activity
inducing signals. A rank-1 constraint is also associated with
each temporal atom to spatially map its influence in the brain.
Within a variational framework, the joint estimation of the neural
signals and the associated spatial maps is formulated as a non-
convex optimization problem. A local minimizer is computed
using an efficient alternate minimization algorithm. The proposed
approach is first validated on simulations and then applied to
task fMRI data for illustration purpose. Its comparison to a
state-of-the-art approach suggests that our method is competitive
regarding the uncovered neural fingerprints while offering a
richer decomposition in time and space.

I. INTRODUCTION

Context.  Functional magnetic resonance imaging (fMRI)
non-invasively records brain activity by dynamically measuring
the blood oxygenation level-dependent (BOLD) contrast. The
latter reflects the local changes in the deoxyhemoglobin con-
centration in the brain [1] and thus indirectly measures neural
activity through the neurovascular coupling. This coupling is
usually characterized as a linear and time-invariant system
and thus summarized by its impulse response, the so-called
hemodynamic response function (HRF) [2, 3]. Its estimation
links the observed BOLD signal to the underlying neural
activity, which can in turn be used to understand cognitive
processes in the healthy brain or to uncover functional al-
teration in pathological condition. Nevertheless, as a voxel
contains about one hundred of thousands neurons for a typical
spatial resolution (1.5 mm isotropic) the underlying neural
activity signals are associated with possibly different temporal
fingerprints.

Related works. The classical data analysis approach pro-
poses to decompose the BOLD signal using multiple predefined
regressors. Each regressor is a time series that models the given

temporal signature of an experimental stimulus or task, named
condition, convolved with a canonical HRF [4]. Those time-
courses are concatenated into a so-called design matrix, and
fitted to the observed BOLD data. The estimated coefficients
provide the encoding localization of each condition in the
brain [4]. The main limitation of this massively univariate
approach is twofold: first, it treats one voxel at a time using
the same model; second, it requires the prior knowledge of
the experimental paradigm. For these reasons, unsupervised
multivariate methods have been introduced in the literature
to deal with paradigm-free fMRI datasets such as resting-
state recordings. The most famous are likely the principal
component analysis (PCA) [5] and the independent component
analysis (ICA) [6, 7]. However, all these techniques directly
work on the measured BOLD time series and do not deconvolve
them to highlight neural activities. An alternative consists in
distangling the neurovascular coupling by deconvolving the
BOLD signal using a well chosen HRF [8-10] and thus recov-
ering voxel-wise neural activation signals. Those approaches
provide as many components as the number of voxels. Those
components are then used to explore the underlying structure
in the data by quantifying either how they cluster together or
their functional connectivity.

Goals and contributions. This paper presents a new algo-
rithm that aims to offer a rich decomposition of the BOLD
signal using low-rank sparse decomposition. Following the
ideas developed in the dictionary learning literature [11, 12],
our approach consists in modeling the observed BOLD signal
as a linear combination of a limited number of temporal atoms
whose first-order derivative is sparse. In that purpose, we
introduce spatio-temporal maps which take the neurovascular
coupling (temporal aspect) and the localization of activa-
tions (spatialization) into account. Then, we jointly estimate
those temporal atoms and the associated maps with properly
selected constraints. The resulting optimization problem is non-
convex but an approximated solution can be computed using
an alternate minimization algorithm with an efficient procedure
to be performed at each step.

Section II introduces our modeling of the BOLD signal
and presents our estimation algorithm. Next, our technique
is evaluated against state-of-the-art algorithm in Section III.
Conclusions and future work are discussed in Section IV.



II. LOow RANK DECOMPOSITION OF THE BOLD SIGNAL

In this section, we present our modeling of the BOLD signal
and derive an efficient algorithm to estimate its parameters.
Notation.  z; denotes the i entry in vector z. Letj“v =
T — L + 1, the convolution of two signals z &€ RXT and
d € R'™™L is denoted by z xd € R*™*T, For D € RPXE,
z + D € RP*T is obtained by convolving each row of D
with z. We denote L the discrete integration operator such
that Vz € R"T, Lz = (305, Z%i)ieq1 Y-

A. Linear and time-invariant modeling

A common model for the multivariate (P voxels, T' scans)
BOLD data X € R”*T with X = (x;);eq1..py is the linear
and time-invariant model (LTI) [3], where for each voxel, the
measured time series, denoted x; € RIXT s tlle convolution
of a neural activation signal, denoted a; € R™7T with a given
HRF, here denoted v € R*L such that T; = v * aj +
e; where e; € R'™T refers to an additive white Gaussian
noise [13]. Typically, the HRF v has a restricted support in
time and quantifies the neurovascular coupling in a specific
region of the brain. For the sake of simplicity, the same HRF
shape is usually considered for the whole brain and we choose
the canonical SPMs double gamma function HRF, as mention
in [14]. This model extends as follows:

X=-viA+E (1)
with B = (ej)jeq1.py € R7T and A = (@;)jeq1.p} €
RE*T The activation signals A capture, in an univariate
manner, the periods of time during which some voxels are
involved in task performance (or in spontaneous BOLD signal
fluctuations). In this univariate model, P independent neural
activation signals (a;)j € {1..P} are learned, one for each
voxel. In our work, we propose to learn K temporal activations
(@r)reqi..xy and their associated spatial maps wuy € RPx1,
as we aim to recover K distinctive functional networks with a
specific temporal fingerprint. This can be modeled by replacing
each vector a; in Eq. (1) with a linear combination of the
activations (ay,) ke{1..K}- A classical assumption for these tem-
poral activation signals is to consider them piecewise constant
as in [8-10]. To that aim, we model them as a, = Lz,
where z; is sparse. The spatial configuration u; € RP*!
encodes which voxels are linked to a given temporal activation
Lz, € R™T_ In our work, we propose a fixed HRF v and
define the rank-1 spatio-temporal maps uiv' € RPXV as
the convolution kernel with the neural activity, as depicted in
Fig. 1. Learning the HRF will be deferred to future work. Our
forward model for BOLD fMRI data thus reads:

K
X = Zsz (upv ")+ E. )
k=1

R - e

o]
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Fig. 1: Illustration of the low-rank BOLD signal model (the
colors are there for illustrative purposes).

B. Optimization problem

The spatial maps (ux)recq1..x} and the neural activation
signal (2 )req1..x}. from Eq. (2), can be jointly estimated by
solving the following constrained minimization problem:

K 2 K
Z sz ukv +>\Z||Zk||1
k=1 F k=1

luglh =n and wug; >0 3)

To be consistent with [8—10], we enforce the temporal atoms
(2k)kef1.. K} to be sparse in order to constrain (L2 )re{1..x}
to be piecewise constant signals. Indeed, most of experimental
paradims in fMRI propose to model task-related evoked activity
using block signals. Moreover, to limit the indetermination in
the convolution we impose the non-negativity in the entries
of the spatial maps (ux)rc1..x}- Last, to deal with the scale
ambiguity — the fact that any solution pair (%, 2j) is known up
to a multiplicative constant — we set Vk € {1.K} |ugl1 =
n, with n € Ry being a parameter of our method that fixes the
magnitude of each spatial maps. This optimization problem is
biconvex in (ux)req1..x} and (2x)re{1..x}, meaning that it is
convex in each variable but not jointly convex. We minimize
Eq. (3) using a block-coordinate descent algorithm, where we
alternate the minimization between the two convex problems
in (w)reqr..xy and in (2x)req1..x}- Algorithm 1 details these
two steps.

We minimize each step with an accelerated forward-
backward algorithm [15] with Armijo backtracking line search
[16]. Recall that for v € R'™*L g € R'™*T and ¢ € RIXT
V(3| —vx a||2) = —v" % (x — v *a) with the time flipped
HRF véI =VF_, , thus our gradient steps read:

J((wr)k, (21)

subject to

K
Vi Fu,(21) = —LT((u[v (X — Z Lzp)%(ugv ))),

Vo, Fzp (up) = — (ng (X — f: Lz)#(ugv )))
=1

The computation of VI, (zr) is optimized by pre-
computing —L" (upv")™X and LT (upw")(upv")L
while that of V,, F%, (uy) is accelerated by pre-computing
—v(Lz)"%X and v(Lz,)"v ' (Lz), as those quantities
remain constant during these respective steps.



Algorithm 1: Low rank decomposition of the BOLD
signal.

Input: BOLD signal X, ¢
G

1 initialization: 2" = 04, u!” = w{"" i=1;
2 repeat
3 | Estimate the temporal atoms z\” with fixed u!'~":
K _ 2 K
arg min— X—Z(sz)i(u,(:_l)v—r) +A Z Iz 1
(k) 1 F k=1
4 Estimate the spatial maps u,(f) with fixed z,(j):
X 2
argmin— | X — Z(Lz,(:))%(ukv—r)
(uk)k k=1 F
subject to luglh =n and wug; >0
s until ZE 0= I(@EDe @)

TN, D)) =

The proximal operator of g, ((zx)xr) = A Zle ||z&||1 is the
soft-thresholding defined coordinate-wise as sign(z)(|z| — ) 4.
For the constraint g, ((ux)r) = Ijjuu|,=n + Lu,,>0 on the
spatial maps, the corresponding proximal operator is given
by prox g,(ux) = [(ur; — 1)+]1<j<p With g is defined as
Z;D:l max{0,ur; — p} = n and an efficient implementation
can be found in [17].

We early-stopped the main loop when each main iteration
does not decrease sufficiently the cost function. In practice less
than 50 iterations of the main loop were needed to converge.

Owing to the global non-convexity, this approach converges
to a local minimizer of Eq. (3), which may be sub-optimal
for our estimation objective. To initialize the spatial maps
(uk)k=1.. K, we draw each entry as a centered Gaussian
variable with variance 1. To limit the impact of the initialization
selection, we run multiple times the minimization.

III. NUMERICAL EXPERIMENTS

In this section, we validate our approach on simulation and
illustrate its application to real fMRI data. All experiments
were performed in Python and our implementation, as well
as the scripts for experimental validation!, are freely available
online.

A. Results on synthetic data

Artificial BOLD time series. @ We randomly generated
P = 100 BOLD signals X. Each time series x; was defined
as the linear combination of two temporal atoms (zi, z2)
comprising two blocks each whose duration was fixed to 10 s
and the magnitude was randomly drawn from a Gaussian
distribution centered on 1.0. The weights are defined in two
spatial maps(u;,us) with a single non-zero pixel in each
map. To simulate a realistic scenario, we chose a TR of

"https://github.com/Cherkaouilamza/seven
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Fig. 2: (a) In black the observed BOLD signal within the
associated activation region normalized by their ¢, norm, in
blue the true temporal atoms, in the recovered temporal
atoms. (b) The yellow-purple maps define the spatial ground
truth and estimates. The standard deviation across voxels is

encoded by transparency around mean curves.
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Fig. 3: Localization in the right Precentral Gyrus region of
the two voxels (red crosses) chosen to illusrate the comparison
between TA and LRD methods.

1.0s and a total scan duration of 1min40s (I" = 100 scans).
We added a centered Gaussian noise such that the generated
synthetic data has a signal-to-noise ratio of 1.0 dB, defined by
SNR=10lo (” ZkK:1(sz)’i‘(ukUT)H§)_
&10 TE

Results.  For this experiment, we chose K = 2 and set
the regularization parameter A to 0.4\ ax, Where Ay ax i the
minimal value for which 0 is solution of Eq. (3) and we fix
the ¢1-norm for each map to be equal to n = 10.0. Fig. 2(a)
displays the estimated temporal atoms (LZ7, LZ5) in orange,
along with the observed BOLD signals in black and the true
signals in blue. Fig. 2(b) shows the corresponding spatial map
estimates (U1, U2) besides the ground truth. The temporal atom
estimates recovered well the true signals. The block offsets are
correctly temporally aligned but the rising and falling slopes
of each block are not perfectly vertical. This indicates that
their temporal derivative (27, Z5) are not perfectly sparse. The
spatial maps are adequately recovered as the activated regions
are well localized and the map estimates are sparse.

B. Results on real fMRI data

Comparison to Total Activation approach. We qualita-
tively compare our BOLD low-rank decomposition (LRD) to
the state-of-the-art method, called Total Activation (TA) [8].
In this approach, the authors propose to deconvolve the BOLD
signal by minimizing a convex cost function that involved a



sparse temporal constraint and a total variation spatial con-
straint. Their univariate approach allows to recover, a voxel-
specific piecewise constant signal that models the neural acti-
vation signal as in our method. The main difference between
the two methods is that our multivariate technique allows
to recover a much easier-to-interpret decomposition of this
neural activation signal. To reduce the computational cost
of TA for this experiment, we only considered the temporal
regularization.

HCP task fMRI data. Our validation was performed on
the Human Connectom Project (HCP) dataset [18] which
comprises fMRI recordings of participants performing differ-
ent motor tasks. The tasks were adapted from the protocol
developed in [19]. We chose this dataset as it presented
both a good temporal and spatial resolution. A short time of
repetition (TR=720 ms) was actually used to collect interleaved
simultaneous multislice echo-planar images with a Multi-Band
factor of 8 and a spatial resolution of 2x2x2mm. Each fMRI
run lasted 3min34s in total during which 7' = 284 scans
were acquired. The fMRI data were already preprocessed
using a classical pipeline including realignment, coregistration,
spatial normalization and smoothing (5 mm isotropic). The
experimental paradigm (EP) was divided in two sets of motor
tasks, with 15s fixation blocks at the beginning, in the middle
and at the end of the recording. Each set was composed of 5
conditions, each modeled by a blocks of 12s, preceded by a 3s
cue indicating the task to be performed by the participant. The
former corresponded to moving the tongue, tapping the left or
right finger or squeezing the left or right toes. In what follows,
we only consider one participant even though our results are
reproducible across individuals.

Voxel selection. We aim to qualitatively compare the re-
covery of the neural activation signals for these two tech-
niques (LRD and TA) in each voxel. Each fMRI run comprises
a huge data set consisting of 230,314 voxels (time-courses).
Thus, we only display results for a specific region the right
Precentral Gyrus, corresponding to a subsample of 960 voxels
in which we chose to display two voxels (see Fig. 3) illustrating
the two methodologies.

Results. For this experiment, we chose K = 8 as 8
experimental conditions were involved in the paradigm. As
those approach are unsupervised models with no ground truth,
we set the regularization parameter for LRD and TA by hand
such that A4 = 0.02\max and Aprp = 0.07 A\ .. Last, we
set the ¢;-norm for each map of LRD to be equal to n = 10.0.
Fig. 4 illustrates the behavior of the LRD and TA deconvolution
methods in these two voxels. In voxel-1, the low-rank neural
activation signal (shown in blue) appears similar to the TA
one. Both approaches mainly capture the same dynamics in
the measured BOLD signal in this voxel. However, in voxel-
2, some high frequency components (short-duration activity)
that are retrieved in the TA neural activation signal are not
captured by our LRD method. This suggests that our model is
less sensitive than TA in this voxel. As our temporal atoms are
learned across voxels, this is a direct consequence of reducing
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Fig. 4: In black the BOLD signal, in red the neural activation
signal obtained using TA and in blue the neural activation
signal obtained using our LRD approach.

the number of degrees of freedom in the temporal domain in
LRD in contrast to TA. Fig. 5 and Fig. 6 depict respectively the
temporal activities and the spatial maps associated to 2 of the
8 temporal atoms estimated with our LRD approach. Atom #7
is mainly composed of two blocks locked to the offsets of
the condition left hand and its spatial map is sparse, with a
very well localized region of activation. This suggests that our
model has learned the experimental condition that elicits brain
activity in this region. In contrast, atom #8 embodies a slightly
rising slope between two constant periods, which illustrates its
link to the low frequency fluctuations in the fMRI data. The
second map displays smoother and wider activation areas in
the right Precentral Gyrus, suggesting that this model is also
capable of modeling trend effects, not related to the conditions.
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Fig. 5: The different conditions from the experimental
paradigm are represented in background: blue for left hand,
red for right hand, green for left foot and for right foot.
Each condition lasts 12 s. On the foreground, the estimated
temporal atom.
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Fig. 6: The spatial maps associated with each atom. We have

limited our analysis to the right Precentral Gyrus region
(delimited in black). Values of estimated maps are color coded.

IV. CONCLUSIONS

This paper presents a new low-rank decomposition modeling
of the BOLD signal and a corresponding algorithm to perform
both the deconvolution in time and the mapping in space.
Although such low-rank modeling was already introduced in
the dictionary learning literature [12], we adapted its formu-
lation to fMRI data following ideas from the TA approach.
In the validation on real fMRI data, we showed that our
method provides a similar decomposition than TA. However,
our multivariate model exhibited meaningful components that
compose the BOLD signal along with their corresponding
spatial maps. Nevertheless, the proposed algorithm remains too
computationally demanding as the gradient steps involved all
the voxels and time-frames. To reduce the computational cost

in the future, we will investigate variable splitting approaches
such as randomized block coordinate descents. This contri-
bution opens new research avenues for inspecting functional
connectivity networks that involve mostly the same atoms.
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