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Abstract—In clinical and biological applications of T2 relaxom-
etry, a multi-exponential decay model proved to be representative
of the relaxation signal inside each voxel of the MRI images.
However, estimating and exploiting the model parameters for
magnitude data is a large-scale ill- posed inverse problem. This
paper presents a parameter estimation method that combines
a spatial regularization with a Maximum-Likelihood criterion
based on the Rician distribution of the noise. In order to properly
carry out the estimation on the image level, a Majorization-
Minimization approach is implemented alongside an adapted
non-linear least-squares algorithm. We propose a method for
exploiting the reconstructed maps by clustering the parameters
using a K-means classification algorithm applied to the extracted
relaxation time and amplitude maps. The method is illustrated
on real MRI data of food sample analysis.

Index Terms—MRI, multi-exponential model, Maximum-
Likelihood, Majorization-Minimization, K-means.

I. INTRODUCTION

In MRI transverse relaxation (T2) relaxometry, a series of
T2-weighted images are acquired at a fixed sampling rate
using a multiple spin echo (Multi-SE) technique. In most
approaches, a mono-exponential decay curve is fitted to the
measured signals, and one T2 per voxel is estimated (time
constants of the decay curve) alongside their correspond-
ing amplitudes A0 [1]. However, in many cases a multi-
exponential decay curve can provide more relevant information
on the micro-structure or composition of the tissue. Actually,
since the size of an MRI voxel is of the order of 1 mm3,
it may contain several different components such as lipids
and water, or several kinds of water pools with different T2.
The latter case is typically observed when analyzing MRI data
of plants. Multi-exponential T2 and A0 maps can be used to
access information about water status and distribution at the
sub-cellular level. This is useful for example for the assessing
of fruit characteristics in the monitoring of the post-harvest
ripening of tomato fruit [10]. The Multi-exponential behavior
is attributed to different water pools corresponding to the com-
partments of the plant cell (vacuole, cytoplasm and wall). The
same situation occurs for myelin water fraction in the brain [9],
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where three major components are used to represent the water
trapped between the myelin, the intra/extra-cellular water and
the cerebro-spinal fluid. The multi-exponential aspect of the
measured decay signal can be described by a continuous T2
distribution, or by limiting the number of exponential decay
curves inside each voxel to a small discrete number equal to
the number of components. In this study, the expected number
of components is considered as known and is of low value (tri-
exponential model).

The noise in the MRI data is considered to follow an
independent and identically distributed Gaussian noise in the
complex domain. However, the phase of the complex data is
both time and space dependent due to various uncontrollable
factors related to the acquisition process. Thus, estimating the
parameters directly in the complex domain proves to be a
challenging problem. The common approach is to carry out
the parameters estimation from the magnitude of the measured
signals. This non-linear transformation, in the case of single
coil acquisitions [5], results in a Rician distributed noise.
Rician noise can be approximated by a Gaussian distribution
for high signal to noise ratio (SNR). However, in relaxometry,
the SNR of the acquired data is critically low, particularly at
the end of the relaxation curve. If the Rician noise distribution
is not properly accounted for, it leads to a bias on the estimated
parameters [11].
A Maximum Likelihood (ML) estimator based on the Rician
probability density function is implemented in order to reduce
the estimation bias caused by the Rician distribution [13].
Moreover, in order to stabilize the algorithm for low SNR
values, a spatial regularization approach is implemented by
taking advantage of low voxel to voxel variability at different
image structures [6], [8]. Due to the large amount of memory
needed to directly implement the spatial regularization on
the image level, it has been carried out either by dividing
the image into overlapping patches [8] or by carrying the
estimation on regions of interest.
The exploitation of the estimated parameters proves to be a
complicated process due to the large amount of information
in the reconstructed maps. A step of data classification in
the space formed by the estimated parameters is suggested in



order to extract a distribution of the estimated T2 parameters
at different spatial regions of the image.
In this paper, an efficient penalized ML algorithm is presented
in order to carry out the estimation on the whole image at
once and obtain voxel level information [2]. The first feature
of the algorithm is to estimate all the image parameters simul-
taneously using a Majorization-Minimization (MM) approach
leading to a quadratic majorant function to be minimized with
an adapted Levenberg-Marquardt (LM) algorithm. The partic-
ularity is to compute a maximum step-size that guarantees the
parameters positivity and to adopt a step search approach using
a backtracking technique based on the Armijo line search to
find a step-size that ensures the convergence of the algorithm.
The main contribution of this paper is to propose an appraoch
allowing to exploit the extracted parameters. It is based on
clustering the estimated parameters using a non-supervised
classification approach based on the K-means algorithm. Tests
were conducted on simulated phantom and on experimental
MRI images of a tomato. The performances are illustrated
through numerical and visual results.

II. PARAMETERS ESTIMATION

Magnitude MRI data, measured with a Multi-SE sequence,
are composed of Nt images. The fixed sampling time be-
tween two successive images is given by ∆TE. For a multi-
exponential decay signal with Nc components inside voxel j,
the measured signal mj(τ), can be fitted by a predicted signal
model Aj (τ,θj) expressed by :

Aj (τ,θj) =

Nc∑
c=1

A0(c,j)e
− τ
T2(c,j) , for τ = τ1, ..., τNt (1)

where θj = [A0(1,j) , T2(1,j) ... A0(Nc,j)
, T2(Nc,j) ] is the

vector of unknown parameters of length Np = 2Nc.

A. Problem statement

In magnitude MRI data with a sufficiently high SNR, the
noise distribution can be approximated by a Gaussian distribu-
tion. However, at low SNR the relaxation data statistics follows
a Rician distribution model. Thus, in order to precisely esti-
mate the parameters, the Rician probability density function
PR should be taken into account. This leads to a Maximum
Likelihood estimator that can be solved by maximizing the
following likelihood function :

L (m,θ) =

Nv∏
j=1

τNt∏
τ=τ1

PR (mj (τ) | Aj (τ,θj) , σ) =

Nv∏
j=1

τNt∏
τ=τ1

mj (τ)

σ2
e
−
[
mj(τ)

2+Aj(τ,θj)
2

2σ2

]
I0 (Djτ ) , (2)

where Nv is the number of voxels, m is a vector containing
the measurement at all the voxels of the MRI image, θ =
[θ1 ... θNv ], I0(·) is the zeroth order modified Bessel function
of the first kind, Djτ =

mj(τ)Aj(τ,θj)
σ2 , and σ2 is the variance

of the Gaussian noise. By taking the log of the likelihood

function and reformulating, minimizing the likelihood function
in (2) comes down to minimizing the following ML criterion :

JML(m,θ) =

Nv∑
j=1

τNt∑
τ=τ1

[
Aj (τ,θj)

2σ2

2

− log (I0 (Djτ ))

]
,

(3)
Estimating the high number of parameters under low SNR
conditions is an ill posed problem. The spatial regularity
at different image structure is accounted for by adding a
penalizing function to the JML criterion. For each voxel j,
a penalty function ψ is computed such that high differences
between parameters belonging to a predefined neighboring
region Vj are penalized :

R(θ) =

Np∑
p=1

β(p)

Nv∑
j=1

∑
i∈Vj

ψ (θj (p)− θi (p)) (4)

β is the vector that controls the weight attributed to the spatial
regularization. An L1-L2 penalty function ψ was used in order
to minimize the inter-tissue blurring [7]. The penalized ML
(PML) criterion to be minimized is thus given by :

F (m,θ) = JML(m,θ) +R(θ) (5)

B. Proposed algorithm

The PML criterion does not have an analytical solution thus,
an iterative approach must be adopted. In order to minimize the
F (m,θ) criterion, two main challenges must be resolved; the
first one is the non-convexity of the JML(m,θ) criterion and
the second one is the voxel-wise dependency of the solution
due to the regularization penalty function.
The optimization algorithm is based on a MM approach. It
allows the minimization of a non quadratic, non convex and
multidimensional criterion by transforming it into a separable
quadratic criterion easier to minimize. Firstly, the strictly
concave − log (I0 (·)) function is majorized by its tangent :

− log
(
I0

(
D

(k)
jτ

))
−
mj (τ)

σ2
R
(
D

(k)
jτ

)(
Aj

(
τ,θj

)
−Aj

(
τ,θ

(k)
j

))
(6)

where θ(k)j is the the vector of the estimated parameters at
the kth iteration of the MM algorithm and R(·) = I1(·)

I0(·) where
I1(·) is the first order modified Bessel function of the first
kind. The obtained quadratic ML criterion to be minimized at
each step k of the MM algorithm is given by [12] :

QML(m,θ(k)) =
1

2σ2

Nv∑
j=1

τNt∑
τ=τ1

(
mj (τ)R

(
D

(k)
jτ

)
−Aj (τ,θj)

)2
.

Secondly, Erdogan and Fesslers’s [3] method is used to
construct a majorant function that establishes a voxel-wise
variables separability. Accordingly, for each iteration k of the
MM algorithm, the regularization function is majorized by :

ψ (zj − zi) ≤
1

2
ψ
(

2zj −
(
z
(k)
j + z

(k)
i

))
+

1

2
ψ
(

2zi −
(
z
(k)
j + z

(k)
i

))
. (7)



The obtained majorant criterion of the F (m,θ) is given by
QPML(m,θ(k)) = QML(m,θ(k)) +Qreg(θ

(k)) with :

Qreg
(
θ(k)

)
=

Np∑
p=1

β(p)

Nv∑
j=1

∑
i∈Vj

ψ
(
2θj (p)−

(
θ
(k)
j (p) + θ

(k)
i (p)

))
(8)

The minimization of QPML(m,θ(k)) criterion is performed
by a Levenberg-Marquardt (LM) algorithm witch is suited for
solving non-linear least-squares problems. At iteration l of the
LM algorithm, the parameters are updated in a direction dLM
depending on the residual r and the Jacobian matrix J :

d
(l)
LM =

[
J(l)TJ(l) + λ(l)

]−1
J(l)Tr(l) (9)

r is expressed such that QPML(m,θ(k)) = 1
2 ‖ r ‖

2
2. λ

is a diagonal matrix that contains the LM parameters for
each voxel. In order to ensure the physical coherence of the
estimated parameters, a positivity constraint is imposed. In
order to ensure a sufficient decrease of the criterion, the step-
size is computed using a backtracking technique based on
the Armijo condition bounded by a maximum step-size that
guarantees the positivity of the parameters. The proposed MM-
PML algorithm is summarized in algorithm 1.

initialize θ(0);
for k ← 0 to kmax or until convergence do

For all j and i compute
(
θ
(k)
j (p) + θ

(k)
i (p)

)
;

For all j compute mj(τ)R
(
D

(k)
jτ

)
;

set θ(0)LM = θ(k) ;
for l← 0 to lmax do

Compute d(l)LM ;
Compute the step-size α(l) using armijo line

search.;
Compute θ(l+1)

LM = θ
(l)
LM + α(l)d

(l)
LM ;

end
update θ(k+1) = θ

(lmax)
LM

end
Output: θ(k+1)

Algorithm 1: The MM-PML algorithm

The algorithm is said to have converged if the value of
the gradient is smaller than a tolerance value gtol or if the
difference between the objective function at step k + 1 and k
is smaller than a tolerance value ftol :

F (m,θ(k+1))− F (m,θ(k))

F (m,θ(k+1))
≤ ftol. (10)

C. Classification of the results based on the estimated param-
eters

The reconstructed multi-exponential maps contain informa-
tion that can be exploited in order to classify the image com-
position into coherent regions and extract the corresponding
T2 distribution. To our knowledge, this problem has not yet
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• 108 50 482 202 756 508

Fig. 1. T2 and A0 values used for generating the phantom.
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Fig. 2. The evolution of the PML criterion (in blue) across the external MM
steps (orange points) and the internal LM steps (blue points)

been treated in the context of MRI relaxometry. Actually, Each
voxel j of the image have Np estimated parameter that can be
considered as features. The K-means clustering algorithm was
applied [4] to the whole image as it is an unsupervised method
of classification. The number of classes is chosen visually,
such that, by adding another class, two classes with very
close T2 distributions will be obtained. Finally, the results of
the classification with the corresponding T2 distribution inside
each class are shown.

III. MATERIALS

Both the MM-PML algorithm and the K-means clustering
are tested on simulated and experimental MRI data.

A. Simulated data

A circular phantom was constructed on an image of 128×
128 voxels, with an outside ring and 9 inner disks of different
radii. At each part of the phantom, a different tri-exponential
model was generated. T2 and A0 values that are close to
parameters typically found in tomato fruits were used as seen
in Figure 1. Then, a Rician noise was added with a variance
of σ2 = 49 in order to obtain a SNR value close to that found
in experimental MRI data (212) (SNR =

∑Nv
j=1mj(τ1)

σNv
).
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Fig. 3. Reference (first columns) and estimated A0 and T2 maps on
the phantom using a non-regularized (second columns) and the proposed
regularized algorithm (third columns).
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Fig. 4. Spatial partitioning of the 5 classes identified by the K-means
algorithm and the joint distribution of parameters (T2;A0).The violet crosses
represent the position of the estimated centroids. The gray astroı̈des represent
the real values used for simulation.

B. Experimental data

For the experimental MRI settings, a Multi-SE sequence
was used on a 1.5T MRI scanner (Magnetom, Avanto,
Siemens, Erlangen, Germany), with inter-echo spacing (∆TE)
of 6.5 ms, bandwidth of 260 Hz/pixel, 512 echoes per echo
train and a repetition time of 10s. The median planes of fruit
(transverse section at middle height of fruit) were imaged with
a total of 128 × 128 voxels and a slice thickness of 5 mm,
resulting in voxel size of 1.19×1.19×5 mm3. The reference
maps where acquiring with 32 scans in order to obtain higher
SNR (687), and to verify the stability of the algorithm at the
lowest SNR (145), the same images with only one scan were
acquired.
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Fig. 5. A0 and T2 maps reconstructed from MRI images of a tomato acquired
with 32 scans and 1 scan.
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Fig. 6. Spatial partitioning of the 5 classes identified by the K-means
algorithm and the joint distribution of parameters (T2;A0).The violet crosses
represent the position of the estimated centroids.

C. Settings

In order to implement the regularization, the penalizing
function ψ and the penalizing weight vector β must to be
chosen. The choice of the penalizing function affects the inter-
tissues smoothness, whilst the penalizing weight affects the
degree of smoothness on the whole image. In this study, an
L1-L2 penalizing function was used with a weight β chosen
by trial and error so as to preserve a good separation between
edges. The algorithm stopping criteria gtol and ftol were
both set to 10−6. Numerical results were computed using
the normalized root mean square error (NRMSE) that was
computed as follows :

NRMSE = 100

√√√√ 1

NvNp

Nv∑
j=1

Np∑
p=1

(
θj (p)− θ∗j (p)

)2
θ∗j (p)

2 (11)



with θ∗j the reference parameters at voxel j.

IV. RESULTS

In Figure 2 the value of the F (m,θ) criterion is shown
at every step of the MM algorithm. By applying the LM
algorithm to minimize surrogate criterion, a descent of the
initial criterion is guaranteed, thus validating the correctness
of the choice of the majorant functions.

A. Simulated data
In Figure 3 the results of applying the MM-PML on the

phantom are shwon and are compared to a non-regularized
version of the algorithm (β=0). Using the regularized al-
gorithm, the maps are reconstructed with satisfying edge
preserving which allows us to visually distinguish between
the different structures even in low contrast situations. By
adopting the spatial regularization, the noise of the recon-
structed maps was reduced and the contrast between different
image regions was more clearly pronounced. Numerically, a
low NRMSE/voxel/parameter was obtained for the regularized
version 4.47% whereas for the non regularized version we ob-
tained a value of 22.85%. This further validates the importance
of the regularization on reducing the estimation error.
In Figure 4, the classification algorithm was applied to the
results of the parameters obtained with the MM-PML algo-
rithm. The different voxels were associated to their right class
with a precision of a 100%. Furthermore, the distribution of T2
values inside each class are shown and the centroids estimated
using the k-means algorithm proved to be very close to the
true values used for simulating the phantom.

B. Experimental data
Figure 5 shows that images reconstructed from low and

high SNR data are quite similar for the different parameters,
thus validating the robustness of the method to different
noise levels. Furthermore, a low NRMSE equal to 5.56% was
obtained. This shows that even with low SNR the algorithm
converged to values close to those estimated from high SNR
data which will allow us to reduce the acquisition time by
scanning the fruit with only one repetition. Figure 6 shows the
results of the k-means algorithm and the distribution of the T2
values inside each identified class. Three different tissues (out
of the anticipated five) of the tomato are well identified using
the proposed classification technique and are attributed to a
class with different T2 distribution. The red class represents
both the locular tissue and the extreme periphery, the green
class represents the union of the outer pericarp and the core
of the tomato and the blue class represents the placenta. The
black class distribution is not shown because it is attributed
to fraction volumes and it has no physical signification. The
failure to identify the two other classes may be due to the
non-homogeneity of the classes, a phenomena that can be
related either to the physiology of the fruit tissues that is
not 100% homogeneous or to the non-spatial homogeneity of
the MRI antenna (observable on the A0 maps). These points
remain open for further studies by adapting the classification
algorithm to those phenomena.

V. CONCLUSION

In this paper, algorithms for both the reconstruction and
the exploitation of relaxtion times and their corresponding
amplitude maps from noisy MRI magnitude data were pre-
sented. The estimation algorithm showed both stability and
accuracy on real and simulated MRI data. The reconstruction
was carried out, for the first time as far as our knowledge,
on the whole image at once. Furthermore, we were able
to plot the T2 distribution inside different fruit tissues by
using an automatic unsupervised classification technique and
to identify characterizing fruit tissues. This work will enable
the assessment of fruit characteristics at the subcellular level
since the multiple T2 are linked with the water status in the
different cell structures.
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