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Abstract

To evaluate their performance, existing dehazing approaches generally rely on distance measures between the generated
image and its corresponding ground truth. Despite its ability to produce visually good images, using pixel-based or even
perceptual metrics does not guarantee, in general, that the produced image is fit for being used as input for low-level
computer vision tasks such as segmentation. To overcome this weakness, we are proposing a novel end-to-end approach
for image dehazing, fit for being used as input to an image segmentation procedure, while maintaining the visual quality
of the generated images. Inspired by the success of Generative Adversarial Networks (GAN), we propose to optimize
the generator by introducing a discriminator network and a loss function that evaluates segmentation quality of dehazed
images. In addition, we make use of a supplementary loss function that verifies that the visual and the perceptual quality of
the generated image are preserved in hazy conditions. Results obtained using the proposed technique are appealing, with a
favorable comparison to state-of-the-art approaches when considering the performance of segmentation algorithms on the
hazy images.

Dehazing, Image segmentation, Deep neural network, Generative models

1 Introduction

Images used for segmentation often suffer from poor weather conditions, including haze, snow, and rain. Nowadays, Deep
Learning (DL) techniques are widely used to perform segmentation tasks. They require a large amount of training data cov-
ering different situations, including noisy images, in order to properly generalize the segmentation task. However, currently
available datasets do not guarantee sufficient representativeness or even the presence of some meteorological conditions (e.g.,
haze) in their training data. Thus, testing the model with hazy images can hinder the performance for low-level computer
vision algorithms such as segmentation [1]], even if this algorithm is known to be powerful in various circumstances. There-
fore, restoring images from degraded observation under hazy conditions is a useful preprocessing step toward improving
better segmentation. Several dehazing techniques have been extensively studied in the literature, most of them being based
on physical models of image degradation, the problem being simplified to estimating the transmission map [2]]. Such an esti-
mation is made either by using a model (e.g., dark channel prior [3]]) or through some learning approach (e.g., dehazenet [4]).
Other methods do not assume a physical model and try to build an end-to-end system for haze removal based on generative
models (i.e., GAN) and restore original images directly from the hazy ones (e.g., [5}6]).

Usually, the performance of dehazing is evaluated only with respect to some empirical measures. For instance, we note
Structural Similarity Index (SSIM) and Peak signal to noise ratio (PSNR) [7] as the most widely used measures found in the
literature to evaluate the effectiveness of denoising methods. SSIM measures the similarity between two images, taking into
account the similarity of the edges. PSNR is an indicator of the quality of the transmission of information. However, despite
the performance of DL algorithms in dehazing in terms of SSIM and PSNR, there is no guarantee that they will produce
images fit for being used as input to segmentation methods [].

This issue has been tackled by only a few papers found in the literature, which aim at reducing haze in order to improve
segmentation quality. In Li et al. [9], a dehazing algorithm for single hazy images was performed then fine-tuned for
detection using a Fast-RCNN, with improvement reported on detection accuracy on the generated images. Sakaridis et al.
[LO] proposed an end-to-end system for segmentation of a foggy scene, with training only on foggy dataset. Results show
that the model was able to perform segmentation well on hazy images. The proposed model differs from Li et al. [9]] by
adding a segmentation loss to the training procedure and not only a fine-tuning on segmentation and differ from Sakaridis
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Figure 1: Schema representing the DFS model
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et al. [10] by being a preprocessing step toward segmentation of clean images and not an end-to-end segmentation technique
for hazy images. More recently, Liu et al. [11] proposed a deep neural network solution that matches image denoising to
computer vision tasks, and using the joint loss for updating only the denoising network via back-propagation. However, it
assumes that only an independent and identically distributed Gaussian noise with zero mean is added to the original image as
the noisy input image during training, which is not reflecting the usual noise we found in real-world problems. In the current
paper, we are rather aiming at learning how to handle image degradation related to natural artifacts (i.e., haze).

The main contribution of the paper is a new DL-based dehazing system designed to take into account segmentation
performance during training, for improved performance. We continue by detailing the methodology proposed (Sec. [2),
before reporting experiments and results (Sec. [3) validating the capacity of the proposed technique for an effective dehazing
of images, usable for image segmentation.

2 Methodology

2.1 Single Image Dehazing

Currently, several dehazing algorithms attempt to generate clean images using a generative model such as GAN [12], in
which a generator attempted to fool a discriminator, providing most realistic fake sample possible. Specifically, Li et al. []]
used a conditional GAN (CGAN) to perform single image dehazing. We are proposing a model derived from the Pix2Pix
architecture [13]] for dehazing images, with the generator part of the CGAN composed of a downsampling, a residual, and an
upsampling block structure inspired from Johnson et al. [14]]. The loss function of the generator for single image dehazing
is:

Lgenerator = LGAN + )\1 Lpimel + )\2 Lpercepa (1)

where Lgan, Lypizel» and Lype,cep are themselves loss functions on specific elements of the task and )\; are weighting relative
influence in a linear combination. Lg 4 is the loss function from Isola et al. [13] used to generate fake images. L. is the
reconstruction loss between the ground truth for dehazing (a.k.a. the real image) and the fake dehazed image, based on their
individual pixel values, allowing the network to produce crisper images. Lpercep is the perceptual loss used for preserving
important semantic elements of the image in the output of the generator. Indeed, it was shown [5, 6, [14] that the use of
perceptual loss improves the quality of the output by relying on the high-level representation features of a neural network
(here a frozen VGG-16 [15]] is used), which are compared between the real image and the fake dehazed one. It is worth
mentioning here that the same GAN discriminator loss function proposed in the original formulation of Pix2Pix is kept.



(1) Hazy (2) Dehaze (3) DFS 4) GT

(6) Dehaze (7) DFS

(9) Hazy (10) Dehaze (11) DFS (12) GT (13) Hazy (14) Dehaze (15) DFS (16) GT

(17) Hazy (18) Dehaze (19) DFS (20) GT (21) Hazy (22) Dehaze (23) DFS (24) GT

(25) Hazy (26) Dehaze (27) DES (28) GT (29) Hazy (30) Dehaze (31) DFS (32) GT

Figure 2: Four examples showing the performance of the proposed technique: Images 9-12, 25-28 and 29-32 present the problem of far away segmen-
tation and images 13 to 16 show difficulties of far away human segmentation, they are the resulting segmentation map of respectively the images 1-4
for 9-13, 5-8 for 12-16, 17-20 for 25-28 and 21-24 for 29-32, segmentation is done using the SEG-NET, except for the GT segmentation map which is
the ground truth, not the output of the SEG-NET.

2.2 Dehazing for Segmentation (DFS)

The quality of segmentation relies on the input quality, which does not depend only on the acquisition devices but also on
the environmental conditions such as haze or other weather conditions. Thus, removing these artifacts from the input images
(e.g., by dehazing) can have an impact on segmentation quality. A dehazing method for segmentation purposes (referred to
as DFS in this paper) is performed by using the following loss function to train the CGAN generator:

Lgenerator = LGAN + )\1 Lpia:el + >\2 Lpercep + /\3 Lseg~ (2)

Compared to Eq. EI, it adds a new loss component, L4, which evaluates the impact of dehazing on the segmentation
performance.

The architecture of the DFS model used is shown in Fig.[I] The generator network receives an image with haze as an
input and gives a candidate of a dehazed image as the output. Similar to the single image dehazing model, the generator loss
(Eq. E[) is computed through Lgan, Lpiger, and Lpercep. The segmentation loss L4, is computed by placing the output of
the generator (i.e., the dehazed image) into the segmentation network. The obtained segmentation map is then compared to
the ground truth segmentation map, using the Lo loss. Basically, the model tries at the same time to remove haze as much as
possible while preserving, or even improving segmentation performance.



Table 1: Results of the dehazing model on the NYU depth foggy dataset in comparison to the literature. DCP stands for Dark Channel Prior [3]], CAP
for Color Attenuation Prior [18]], NCP for Non-Local Color Prior [19], MSCNN for Multi-Scale CNN [20], DN for DehazeNet [4], CG for CycleGan
[21]], DDN for Disentangled Dehazing Network [6], while Hazy is the original hazy image. Results marked with a star (*) have been produced in our
experiments, while the other non-marked results are reported from Yang et al. [6]].

Metrics | DCP [3] CAP [18] NCP [19] MSCNN[20] DN [4] CG[21] DDN [6] | Ours* DCP* CG* Hazy*

PSNR 10.98 12.78 13.05 12.27 12.84 13.39 15.55 17.89 9.12 975 3.67
SSIM 0.65 0.71 0.67 0.70 0.72 0.52 0.77 0.744 052 045 0.20

3 [Experiments and Results

3.1 Single Image Dehazing
3.1.1 Dehazing Dataset

The D-Hazy dataset is used for our experiments [16]. D-Hazy contains 1449 pairs of synthetic hazy images with ground truth
based on the NYU Depth dataset [17]], which is composed of indoor images and their corresponding depth maps. The haze is
computed from the depth map using physical models, providing realistic haze. The dataset is split 80%/20% between training
and test partitions. Hyperparameters tuning is done through optimization over a random 80%/20% split of the training set.
All the training set is used to infer the model with the selected hyperparameters.

3.1.2 Results for single image dehazing

The proposed dehazing model was trained for 200 epochs using a batch size of 16 and Adam as the optimizer. Every image
is resized to a resolution of 256x256. For the generator loss function (Eq. [I), A\; and A are set as 10, following results
obtained with a grid search over the validation set, which is made by testing 10 values of A\ between 1 and 50. Results
obtained with the proposed technique achieve a PSNR of 17.89 dB versus 15.55 dB for the state-of-the-art [6] and a SSIM of
0.744 versus 0.77, a light degradation of 3.4%. Table I| presents the results of the proposed model versus multiple dehazing
models, including the actual state-of-the-art, Disentangled Dehazing Network [[6]. Because the test set used in our paper is
different from the one used by Yang et al. [6], we need to test algorithms appearing in the results of [6] with our test set.
According to the results in Table 1, results obtained with our test set (marked with a *) show that it is of similar difficulty,
maybe even harder, than the one used by Yang et al. [[6], with DCP and CycleGan performing less well on our test set. Our
results also demonstrate empirically the capacity of the proposed model to remove haze from single images.

3.2 DFS
3.2.1 Dataset for segmentation of hazy images

The second set of experiments is conducted on the Cityscape dataset [22]], which includes a depth map, to simulate a realistic
haze level while providing relatively complex scenes (i.e., a high traffic level in the images). For that purpose, we follow
the methodology of Sakaridis et al. [10] to generate realistic hazy image datasets. The final dataset is composed of ~550
foggy images with the ground truth segmentation map in fine annotation. Around 50 images were randomly selected from
the training set for the validation set while the 51 images proposed as a validation set for the foggy Cityscape [[10] were used
as a testing set.

3.2.2 Training methodology and parameters

In addition to its dehazing capability the proposed DFS model contains a segmentation loss which is computed using a
segmentation model (referred to as SEG-NET). Except for the segmentation loss, this model is based on the same architecture
as the model for single image dehazing. To train SEG-NET we use a subset of the Cityscape dataset not used to train the
dehazing algorithm. The training was for 40 epochs using a batch size of 16 and Adam as the optimizer. The DFS model
was trained for 100 epochs using a batch size of 8 and Adam as the optimizer. Here all of the images (size 2048x1024)
are cropped into two squares (1024x1024) and resized to 256x256, cropping is necessary to keep the maximum amount of



Table 2: Results on the test set with SEG-NET segmentation (foggy Cityscape). For dehaze (single image dehazing) and dehaze with segmentation loss
(DES), results were done by averaging the best model obtained in validation on each on five different runs. Results in bold are the bests and results in
italic are from the ground truth (GT).

Metrics | Hazy | Dehaze | DFS GT
PSNR | 11.95 | 1477 | 15.36 | 15.45
SSIM | 0.624 | 0.727 | 0.747 | 0.748

Table 3: Results on the test set with DeepLabv3 segmentation (foggy Cityscape). For dehaze (single image dehazing) and dehaze with segmentation
loss (DFS), results were obtained by averaging the best model obtained in validation on each on five different runs. Results in bold are the bests and
results in italic are from the ground truth (GT).

Metrics | Hazy | Dehaze | DFS GT
IoU-cl | 0.556 | 0.553 | 0.557 | 0.570
iloU-cl | 0.294 | 0.309 | 0.316 | 0.340
IoU-ca | 0.745 | 0.774 | 0.775 | 0.794
iloU-ca | 0.518 | 0.554 | 0.569 | 0.627

information and structure of the image before resizing it to a size and shape suited for this network. The parameters Aj, Ao
and A3 of Eq[2 have been set to 10, 10 and 5, respectively, by the application of a grid search using the same logic as for
the single image dehazing, this time only on As, both A\; and A9 are the same as for the single image dehazing. During the
training of the DFS model, SEG-NET is frozen (i.e., not updated by gradient descent).

3.2.3 Testing methodology

During testing, segmentation results are reported on the same SEG-NET used for training the DFS model, and on another
state-of-the-art segmentation model trained on Cityscape, DeepLabv3 [23]. The DeepLabv3 model was not used for training
nor in validation, only for the final test reported here. Comparisons have been done between segmentation performances,
after dehazing using models trained with and without segmentation loss, using foggy images and comparing with the ground
truth non-hazy images. The DFS model and the single image dehazing model are trained using exactly the same training
parameters.

Table 2] presents the results of the PSNR, SSIM and MSE (mean squared error) with the hazy images, dehazed images,
dehazed images with segmentation loss and the ground truth images, without haze, all using SEG-NET segmentation. Table
[ presents the results with DeepLabv3, IoU is the intersection over union metric, ca is for categories, cl is for classes and
iloU refers to instance-level intersection-over-union metric. According to Cordts et al. [22], the IoU measure is biased
toward object instances that cover a large image area. In street scenes, where there can be a strong scale variation, this can be
problematic, especially for traffic participants. To address this problem it has been suggested to use the iloU metric, where
the contribution of each pixel is weighted by the ratio of the class average instance size to the size of the respective ground
truth instance, only classes with instance annotations are included for this measure (classes: person, rider, car, truck, bus,
train, motorcycle and bicycle, categories: human and vehicle).

3.2.4 Discussion of results

In the light of the results obtained with both SEG-NET and DeepLabv3 segmentation network, it appears that adding a loss
for segmentation in the dehazing network significantly increases the accuracy of subsequent segmentation.

With SEG-NET and DeepLabv3, results are always better when the output of DES is used compared to dehazing models
trained without segmentation loss. On average, the boost in segmentation with SEG-NET (PSNR/SSIM) from hazy to
dehazed is around 20%, while from dehazed to DFS, a 3.5% gain is achieved. With DeepLabv3, the IoU metric differences
are not significant for classes even with and without haze (0.556 versus 0.570), but there is a nice improvement for loU with
categories from hazy to dehaze (boost of 3.9%), while a little gain (0.13%), is observed from dehaze to DFS. Yet a significant
improvement is observed with DeepLabv3 using segmentation loss with iloU metric, the boost in segmentation for classes



using iloU from hazy to dehazed is of 5.1%, while from dehazed to DFS the gain is 2.3%. The boost in segmentation for
categories using iloU from hazy to dehazed is 7% and for dehazed to DFS it reaches 2.7%.

Looking at Fig. @, subfigures 10, 11, 14, 15, 26, 27, 30, and 31, a significant improvement is perceptible for targets of
interest located far away in the scene, especially with segmentation of cars and pedestrians, the largest differences being
circled. The difference in segmentation performance between hazy (e.g., Fig. [219) and both dehazing techniques (e.g.,
Fig.|2{10-11) are big, adding the segmentation loss is giving a little boost making the results more similar to the ground truth
(e.g., Fig.[2]12). Comparison between normal dehazing and DFS (e.g., Fig. [2]22-23) shows more similar results, with DFS
appearing to dehaze a little better for targets far away in the scene. The segmentation network also appears to be sensitive to
elements that we usually don’t notice when looking at the images.

4 Conclusion

In brief, this paper demonstrates the usefulness of including segmentation loss in an end-to-end training of deep learning
models for dehazing. The learning-based dehazing model is generated not just for denoising metrics, but also with an
optimization criterion aimed at achieving something useful for a specific task, and with performance improvements that can
be significant in comparison to results obtained with an unguided approach. Moreover we can consider to boost even more
the performance of DFS using directly an approximation of the IoU/iloU measures for gradient descent [24], which are better
optimization measure than mean square error and similar.
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