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Abstract—Multi-hop route optimization in large-scale inhomo-
geneous networks is typically NP-hard, for most problem formu-
lations, requiring the application of heuristics which, despite their
relatively low processing complexity, find sub-optimal solutions.
Where optimal solutions can be determined by Lagrangian based
constrained optimization techniques for example, the processing
complexity typically scales like O(N3), N being the number of
relays employed. Here, we propose an alternative approach to
route optimization by considering the limit of infinite relay node
density to develop a continuum model, which yields an optimized
equivalent continuous relay path. The model is carefully con-
structed to maintain a constant connection density even though
the node density scales without bound. This leads to a formulation
for minimizing the end-to-end outage probability that can be
solved using methods from the calculus of variations. With the
continuum model, we show that the processing complexity scales
linearly with the number of points that sample the continuous
path, which can be lower than the number of relay nodes in a
large scale network. We demonstrate the effectiveness of this new
approach and its potential by considering a network subjected
to point sources of interference.

Index Terms—Multi-hop relaying, RNPP, calculus of varia-
tions, outage, continuum modeling, interference.

I. INTRODUCTION

THE most prominent evolution of wireless networks is
the densification of network deployment [1]–[3]. Further,

the unprecedented growth in Internet of Things (IoT) services
[4], [5], driven by a number of technological, social, and
economic factors [6], will fuel further densification. While
the heterogeneous integration of wireless networks is likely
to provide the required levels of connection ubiquity between
humans, machines, and devices, it will lead to inhomogeneous
spatial interference characteristics.

Multi-hop relaying has long been studied as a way to extend
coverage in wireless networks, reduce energy consumption,
and improve the overall quality of service (QoS). For example,
multi-hop network concepts have been applied in IoT net-
works [7], vehicular networks [8] and numerous publications
addressing the challenges associated with Device-to-Device
(D2D) communications in future cellular systems (see, e.g., [9]
and references therein). Multi-hop connectivity has also been
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considered in the context of secrecy [10] which investigates the
secrecy connectivity probability in multi-hop ad-hoc networks
in the presence of inhomogeneous eavesdropper clusters. Also,
Chen et al. studied optimal routing based on the trusted
connectivity probability for multi-hop D2D communications
with decode-and-forward relaying in [11]. But, these latter
works only focused on the optimal routing based on the
snapshot of the networks, which did not consider how to locate
the positions of the relays to achieve the optimal performance
when we have a large number of relays.

The majority of previous works that consider multi-hop
connectivity are typically in the context of wireless sensor
networks (WSN) [12] or cellular networks [13]–[16] where the
design goal is to optimize some functional, such as coverage,
data throughput or latency for example, and non-functional
such as data integrity. These optimization challenges are
often further compounded by constraints such as total energy
consumption or monetary budget, for example. In the multi-
hop context, these problems are often referred to as the
relay node placement problem (RNPP) where the objective
relates to the deterministic placement of the minimum number
of relay nodes that meet the design objectives. The RNPP
has been proven to be NP-hard [17]–[19] and even with a
relatively low number of relays, the problem is non trivial
and can also be NP-complete [20], [21]. This optimization
challenge has been extensively researched and the common
theme is the non-trivial nature of the optimization problem that
necessitates heuristic or meta-heuristic [22], [23] techniques
to deliver a sub-optimal solution. Arriving at an optimal
solution, if possible, is often computationally expensive [24].
Survey papers [12], [25], with references therein, provides
an overview of heuristic strategies and techniques for node
placement in wireless sensor networks. Two key observations
can be made from these: the appropriateness and practicality
of the heuristic solution, from a numerous set of options,
is very much dependent upon the problem scenario and that
processing efficiency of the routing algorithm is traded against
the optimality of the final solution. If the sub-optimality is
acceptable then the low complexity of the heuristic solution
is clearly attractive; some heuristic processes can approach a
linear scaling [26].

In our work we consider the scenario whereby the placement
of N -relays is deterministic and where the computation of net-
work performance is polynomial time solvable to yield optimal
solutions (in contrast to aforementioned heuristic approaches),
for example by Lagrangian formulation of a constrained opti-
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mization problem. Although robust in determining the optimal
solution, they are computationally expensive; requiring matrix
manipulation that can scale like O(N3) [27], although this pro-
cessing complexity can be reduced by an order of magnitude
by using augmented Lagrangian methods that do not require
matrix manipulations [28]. Although a number of numerical
optimization tools exist for this purpose, e.g. the Matlab R©
function fmincon [29], such tools are computational unwieldy
and prohibitive when applied in the context of large (e.g.
100s or 1000s of relays [1], [30]), energy-constrained relay
networks or where networks are subject to temporal variation
necessitating continuous re-routing to maintain performance
optimality.

In order to yield optimal solutions through lower complexity
computation, we consider an alternate method in the form
of a continuous equivalent relay path. Our approach is based
upon the idea of treating the multi-hop route as a continuum1.
We argue that this approach has the potential to reduce the
complexity in the node placement/route selection process for
dense networks. In order to provide a practical context to
our work, we consider that the network is subject to spatial
inhomogeneity; arising from point sources of co-channel inter-
ference2. Prior work that has considered continuum modelling
include [32] and [33], which treated discrete base station
(BS) entities as a continuum of transmitters in order to yield
a closed form expression for certain network performance
characteristics, and [34], which discussed the application of
variational calculus to a problem of determining the minimal
exposure path in wireless sensor networks. However, to the
best of the authors’ knowledge, no prior art exists relating
to the use of continuum modelling for route optimization in
large scale multi-hop wireless networks. As such, we believe
that the proposed model presents a radically different view of
wireless networks, which we hope will stimulate further inter-
est in developing new approaches to treating complex wireless
networks in the future, even down to the microscopic level,
e.g., nanoscale wireless [35] and molecular communications
networks [36].

Although exploratory in nature, this research offers the
following contributions:

1) we develop a continuum model that describes the end-
to-end outage probability in a multi-hop relay network;

2) we apply the model to find an analytic solution for
the outage-optimal device locations when the system is
subject to an inhomogeneous scalar field of interference;

3) the efficacy of the continuum model is verified by
considering a discrete sampling of the continuum with
a finite number of relay nodes.

The remainder of the paper is organized as follows. In
section II, we introduce the discrete optimization based upon
the Lagrangian method to provide a baseline for comparison.
In section III, we introduce the continuum model for end-to-
end outage probability calculation. In section IV, we elaborate

1Continuum mechanics [31] is a field of study whereby accurate behavior
models are developed based on the assumption that the substance of an object
is assumed to completely fill the space it occupies, even though it actually
comprises a large finite number of molecules.

2Although other forms of spatial inhomogeneity can be considered.

Fig. 1: Multihop wireless network subject to single interferer.

on our continuum model by applying it to study the outage-
optimization problem for a multi-hop wireless network subject
to a single interferer. This is followed in section V where we
consider multiple interferers along with the effectiveness of
approximating a finite number of spatially distributed inter-
ferers by a single equivalent interferer. Section VI provides
thoughts on how to sample the continuum to obtain discrete
node positions for use in practical, finite systems. Conclusions
are drawn in section VII.

II. DISCRETE OPTIMIZATION OF RELAY LOCATIONS

Consider the goal of transmitting a message from a source
node to a destination node via N relay nodes located in
Euclidean space3 Rd, d ∈ {2, 3}. We denote the positions
of the source and destination nodes by p0 and pN+1, re-
spectively, and the position of the ith relay node by pi

4. For
convenience, we collect the positions of the relay nodes in the
set R = {p1,p2, . . . ,pN}.

Fig. 1 illustrates the scenario where a communications
network, located in R2, is subjected to a scalar field of in-
terference originating from a point source. We assume that all
node transmissions are co-channel and temporally continuous5,
relays employ perfect self interference cancellation [37], [38]
and interference from non-adjacent relay nodes is assumed
negligible.

In this example, the average interference level at any node
will have a spatial dependence on its location. Given known lo-
cations of the source, destination and interferer nodes, our goal
will be to optimize a performance metric by the appropriate
positioning of relay nodes. Here, we chose to minimize the

3The analysis does not preclude the use of alternative topological spaces.
4We use pi to refer to the ith node, itself, as well as its position in Rd.
5The subsequent analysis can also be applied to systems employing time

division duplex protocols.
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outage probability of the source-destination communication
link, as defined by

R∗ = argmin
R

f(R), s.t.

{
g(R) = b

h(R) 6 c
(1)

where R∗ represents the set of optimized relay node locations,
f(R) is the objective function dependent upon the relay,
source, destination and interferer locations, g(R) = b is an
equality constraint function relating to the boundary conditions
imposed by fixed positions of the source and destination nodes,
h(R) 6 c represents an arbitrary inequality constraint function
and b and c are constants. A more complex scenario may
have many more constraints. A Lagrangian formulation is then
defined by

L(R, λ1, λ2) = f(P) + λ1(b− g(R)) + λ2(c− h(R)), (2)

where λ1 and λ2 are Lagrange multipliers. Stationary points
are then determined by solving

∇L(R, λ1, λ2) = 0, (3)

where ∇ is the gradient (vector differential) operator. Solving
(3) requires the solution of Nd + 2 simultaneous equations,
which is typically done numerically using successive approxi-
mation techniques such as Newton’s method, which yields the
estimate update

xk+1 = xk − [HL(xk)]−1∇L(xk), k > 0, (4)

where HL(xk) is the Hessian matrix (second-order partial
derivatives of the Lagrangian with respect to the elements of
xk) and xk = {Rk, λ1k , λ2k}.

From an initial approximation for the variables, x0, we
iterate (4) until an acceptable level of convergence is achieved.
Since, at every iteration, the inverse of the Hessian matrix
needs to be evaluated we have a processing complexity that
scales like O(N3), assuming a standard algorithm such as
Gaussian elimination is employed for matrix inversion [27].
The cubic scaling can be improved by using state-of-the-art al-
gorithms, e.g. Coppersmith−Winograd [39], to approximately
O(N2.4). Even with these algorithms, however, it is clear that,
for large numbers of relays, the discrete optimization of relay
locations presents an unwieldy processing task.

III. CONTINUUM MODEL FOR END-TO-END OUTAGE
PROBABILITY

Given the aforementioned cubic scaling in processing com-
plexity with the number of relay nodes using a discrete model,
we postulate that this processing load may be reduced by
considering a continuum model whereby we take the limit
of infinite relay nodes to derive a continuous relay path. Our
goal is to develop a formulation of the end-to-end outage
probability for the source-destination link that is a functional
of the curve in Rd along which relay devices are placed, i.e.,
the points in R should be contained in (or be very close to) the
curve. This curve will effectively signify a path of infinite node
density. To maintain a practical viewpoint, however, we will
retain a finite connection density in the model. It is important
to note that without this consideration, the end-to-end outage

probability would converge to zero as N → ∞. To give a
better picture of this approach, Fig. 1 illustrates a continuous
path along with discrete node placements for a system subject
to a point source of interference. We will return to this example
later.

A. General Formulation

To make progress, we consider a wireless network in R2 and
a model whereby a connection between two arbitrary points pi
and pj exists with probability c(pi,pj), which is independent
of all other connections. We then form a multi-hop route,
between a source p0 and a destination pN+1, via the sequence
of relays at the points in R. The probability that an end-to-end
connection exists between the source and destination can be
written as

Pc =

N∏
n=0

c(pn,pn+1). (5)

We define the outage probability as the complement of the
connection probability, i.e., Po = 1−Pc. It will be convenient
to define the logarithmic connection probability (LCP) as

ψc := logPc =

N∑
n=0

log c(pn,pn+1). (6)

We now consider the homogeneous and inhomogeneous cases
separately.

B. Homogeneous System

In the homogeneous case, the connection function between
nodes depends only upon the Euclidean distance between
them. In this case, we can write

ψc =

N∑
n=0

log c(‖pn+1 − pn‖)

=

N∑
n=0

log c(‖pn+1 − pn‖)
‖pn+1 − pn‖

‖pn+1 − pn‖, (7)

where ‖ · ‖ is the l2-norm. We define `n := ‖pn+1 − pn‖.
Any line in R2 can be partitioned into a sequence of points
P = {p0, . . . ,pN+1} with s = p0 denoting the source and
d = pN+1 denoting the destination such that `0+· · ·+`n ≤ L,
the length of the line. Let the mesh of the partition be defined
as δ` := max `i. Suppose as δ` → 0, we have

log c(‖pn+1 − pn‖)
‖pn+1 − pn‖

→ −q, ∀n and q ∈ R+. (8)

Note that this limit is not dependent upon N since the system
is homogeneous. It follows that

ψ̄ = lim
δ`→0

ψc = −q
∫

d` = −qL. (9)

Thus, we can write the outage probability along the line as

po = 1− e−qL. (10)

It is clear that the path with the minimum length yields
the lowest outage probability. This result is consistent with
findings in [40] which discusses a relay selection strategy
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where the security of a multi-hop network, in the presence
of a homogeneous spatial distribution of eavesdroppers, is
optimal when relays are chosen that are closest to the midpoint
between source and destination nodes i.e. the resultant multi-
hop path length is minimised.

C. Inhomogeneous System

For the case of an inhomogeneous system, we will find
it useful to specify point locations in a parametric manner.
Define the tagged partition Pζz = {z0, z1, . . . , zN+1} with
0 = z0 < z1 < · · · < zN+1 = 1 along with a sequence
ζ0, . . . , ζN , the elements of which satisfy ζn ∈ [zn, zn+1].
The path of points that the communication will traverse can
be written as the sequence p(0),p(z1), . . . ,p(zN+1) where
p(z) = (x(z), y(z)). We can no longer say that the connection
function is only dependent upon the pairwise distance, so we
must write

ψc =
∑
n

log c(p(zn),p(zn+1))

=
∑
n

log c(p(zn),p(zn+1))

zn+1 − zn
(zn+1 − zn). (11)

Let the mesh of the partition Pζz be denoted by δz =
maxn(zn+1 − zn). Now suppose that as δz → 0, we have

log c(p(zn),p(zn+1))

zn+1 − zn
→ −q(ζn) < 0. (12)

for some function q : [0, 1] → R+. It follows that if the
function q is Riemann integrable, then

ψ̄ = lim
δz→0

ψc = −
∫ 1

0

q(z) dz. (13)

The outage probability in this case can be written as

po = 1− e−
∫ 1
0
q(z) dz. (14)

We note that this result generalizes that presented in (10).

IV. MULTI-HOP ROUTE OPTIMIZATION IN THE PRESENCE
OF A SINGLE INTERFERER

We now proceed to apply our continuum model to optimize
the placement of relays, in a multi-hop communications net-
work, when communication takes place in the presence of an
inhomogeneous scalar field of interference in R2 caused by a
single interferer at a known location (see Fig. 1). Our current
analysis focuses on the outage probability of the multi-hop
communication link; however, other metrics can be considered.

In order to progress, we must obtain the function q(z). The
formulation of q is dependent upon the connection model,
which is governed by the channel fading statistics, modulation
and coding schemes employed, and various other characteris-
tics of the system including the interferer in this scenario. In
what follows, we develop the model further by assuming each
pairwise communication link is independent and affected by
Rayleigh fading, and the mean path loss follows an inverse
power law, with exponent η, with respect to the Euclidean
distance between devices. We firstly consider the connectivity
between two arbitrary nodes, transmitter pi and receiver pj

separated by distance dij = ‖pi − pj‖. In this particular
example, we can arbitrarily center the coordinate system on the
interference source, located at (0, 0). The interferer transmits
with power PI at a distance dj = ‖pj‖ from the receiving
node. We assume that all nodes have antennas with uniform
gain G in the R2-plane.

The signal to noise and interference ratio (SINR) at the
receiving node will be given by

SINRj =
PG2( λ4π )2d−ηij |hij |2

σ2 + I
, (15)

where P is the transmit power level of pi, λ is the RF
wavelength, hij ∼ CN (0, 1) is the Rayleigh fading coefficient,
σ2 is the thermal noise power and I is the interference power
level at the receiver as given by

I = ζd−ηj |hj |
2, (16)

where ζ = PIG
2( λ4π )2 and hj ∼ CN (0, 1), with PI denoting

the transmit power of the interferer. We will then have a con-
nection probability, conditioned on the interference, defined
by

c|I(pi,pj) = P[SINRj > τ ]

= P
[
PG2( λ4π )2d−ηij |hij |2

σ2
> τ

(
1 +

I
σ2

)]
, (17)

where τ is the minimum SINR required to establish a commu-
nication link. For convenience, we define a fixed connectivity
scale r0 given by

rη0 =
PG2

(
λ
4π

)2
σ2τ

. (18)

Since |hij |2 has a standard exponential distribution, (17)
becomes

c|I(pi,pj) = exp

(
−
dηij
rη0

(
1 +

I
σ2

))
. (19)

We now average over the fading variable |hj |2 in the
interfering path. Since |hj |2 also has standard exponential
distribution, the connection probability is given by

c(pi,pj) =

∫ ∞
0

exp

(
−
dηij
rη0

(1 + kd−ηj |hj |
2)

)
× exp(−|hj |2)d|hj |2

= e−
(
dij
r0

)η[ 1

1 + Ω

]
, (20)

where Ω = kdηijd
−η
j /rη0 and k = ζ/σ2. Hereafter, with a

slight abuse of terminology, we refer to k as the normalised
interference-to-noise ratio (INR)6.

We proceed with the steps outlined in section III-C to
develop the continuum model further. Having defined our

6In fact, k is proportional to INR, where the proportionality constant is
related to effective antenna aperture.
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connectivity function, we consider two points close to each
other such that

log c(p(z),p(z + δz)) = −
[

1

rη0
‖p(z + δz)− p(z)‖η

+ log

(
1 +

k

rη0

‖p(z + δz)− p(z)‖η

‖p(z + δz)‖η

)]
(21)

Using the Cartesian coordinate system and expanding (21) for
small δz yields

log c(p(z),p(z + δz)) =[
1 +

k

(x2 + y2)
η
2

]
(ẋ2 + ẏ2)

η
2

rη0
δηz +O(δη+1

z ). (22)

For convenience we omit the argument z in functions x and
y such that, e.g., x := x(z) and ẋ := ẋ(z). The dot notation
denotes the first derivative of the function with respect to its
argument, e.g. ẋ := dx(z)

dz . We define

dl =
√
ẋ2 + ẏ2δz (23)

to be the path length differential. Then, under the condition
that dlη−1/rη0 → θ ∈ R+ as δz → 0, the limit becomes

q(z) = θ

[
1 +

k

(x2 + y2)
η
2

]√
ẋ2 + ẏ2. (24)

For the special case η = 2, the ratio dl/r20 is proportional
to the connection density, which is defined as the average
number of connections per unit of length. Hence, the condition
dl/r20 → θ indicates that the connection density must be
constant in the limit.

For convenience we introduce the function

µ(x, y) :=

[
1 +

k

(x2 + y2)
η
2

]−1
. (25)

Specifically, the function µ : R2 → R+ signifies the link
quality at a given point in the plane. We can now write the
outage probability as

Po[x, y] = 1− exp

(
−θ
∫ 1

0

√
ẋ2 + ẏ2

µ(x, y)
dz

)
. (26)

This formulation provides an expression of the outage proba-
bility as a functional7 of the parametric path variables x and
y. We note that the path that minimizes the outage probability
is independent of the scaling factor θ.

Remark. It should be noted that performing the same analysis
for an unfaded interferer [41], yields the same result. This is
intuitive in that one would conjecture that the interference
field, over the continuum, would tend to the unfaded mean
power level in the limit of infinite relay nodes.

7The notation Po[x, y] is used to highlight the fact that the outage
probability depends on the functions x and y.

A. Stationary Paths

Our objective now is to determine the functions x and
y that yield a global minimum in the functional (26). For
convenience, we cast the outage probability expression in polar
coordinates to obtain

Po[r] = 1− exp

(
−θ
∫ φ2

φ1

√
r2 + ṙ2

µ(r)
dφ

)
, (27)

where the link quality function can be expressed as

µ(r) =

[
1 +

k

rη

]−1
. (28)

The radius r is a function of the angle φ, and φ1 and φ2
represent the respective angle-ordinates of the source and
destination nodes.

We now proceed to apply tools from the calculus of varia-
tions [42] to compute the stationary paths in polar coordinates,
which are defined by the function r(φ). Denoting the integrand
in (26) by L(r, ṙ) and recognizing that it does not contain
any explicit function of φ, we invoke the Beltrami identity to
determine the stationary paths:

L− ṙ ∂L
∂ṙ

= C1, (29)

where C1 is a constant. Evaluating (29) gives

ṙ =
1

C1

√
r4−2η(k + rη)2 − C2

1r
2. (30)

For the special case η = 2 and where C1 > 2
√
k, there

exists a closed form solution to (30) as given by the following
proposition.

Proposition 1. The optimum route for the single interferer
scenario is given by

r(φ) = α sn

(
± γ(φ− C2)

C1
,
α

γ

)
, (31)

where sn(u, κ) is the Jacobi elliptic function, κ = α/γ
is the elliptic modulus, α = 0.5C1 − 0.5

√
C2

1 − 4k, γ =
0.5C1 + 0.5

√
C2

1 − 4k and C1 and C2 are constants. The
Jacobi elliptic function is valid over the range 0 < κ2 < 1.

Proof. See Appendix A.

Remark. Although an analytic solution is constrained by the
condition C1 > 2

√
k in this scenario, numeric solutions to

the Euler Lagrange equations can be found generally, as we
demonstrate in subsequent sections.

Given fixed boundary conditions, i.e., the locations of the
source and destination nodes, we employ Mathematica to
determine the constants C1 and C2 for a given value of k. We
illustrate the optimum routes for the cases where the terminal
nodes are located at Cartesian coordinates (1, 0), (−1, 0) and
(0.5, 0), (0, 1), for a range of values of k in Figs. 2 and 3,
respectively. The associated values for the constants C1 and
C2 are given in Table I.

It can be argued that the paths shown in Figs. 2 and 3
are all local minima, since one can imagine perturbations
of the paths toward the interference source would increase
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Fig. 2: Optimal routes with single interferer located at (0, 0)
for k ∈ {1, 3, 5, 10, 25, 50}, Terminal nodes located at Carte-
sian coordinates (1, 0) and (−1, 0).

Fig. 3: Optimal routes with single interferer located at (0, 0)
for k ∈ {3, 5, 10, 25, 50} Terminal nodes located at Cartesian
coordinates (0.5, 0) and (0, 1).

TABLE I: Constants C1 and C2 associated with Fig. 2 (Left
most pair) & Fig. 3 (Right most pair).

k C1 C2 C1 C2

1 2 -18.4508 - -
3 3.5462 -1.37672 3.99392 -0.700254
5 4.70049 -1.03243 5.90698 -0.618215
10 6.98186 -0.73590 10.5208 -0.548211
25 12.0172 -0.49360 24.0634 -0.500087
50 18.3418 -0.37286 46.4783 -0.482431

the INR, while perturbations away from the source would
lead to a reduction in the connectivity probability (due to

the increased path length). More formally, we show that the
stationary paths, corresponding to our functional, are minima
since they satisfy Legendre’s condition. This is detailed in the
following proposition.

Proposition 2. Satisfying Legendre’s condition [42] provides
formal proof that the stationary paths, which satisfy the Euler
Lagrange equation, correspond to minima.

Proof. See Appendix B.

B. Single Directional Interferer

We now introduce a gain function g := g(φ) into the func-
tional (27), which permits a non-uniform spatial distribution
of interference. The functional can now be written as

Po[r] = 1− exp

(
−θ
∫ φ2

φ1

[
1 +

kg

rη

]√
r2 + ṙ2dφ

)
. (32)

Since the Beltrami identity is no longer valid, with the inclu-
sion of this explicit function, we invoke the Euler-Lagrange
equation

∂L

∂r
=

d

dφ

(
∂L

∂ṙ

)
, (33)

to determine the stationary paths of the functional (32), where
L(φ, r, ṙ) denotes the integrand. For the special case η = 2,
we can show that the Euler-Lagrange equation reduces to

F (φ, r, ṙ) := r̈ = r +
2ṙ2

r
−

(2gr + ġṙ)(1 +
(
ṙ
r

)2
)

r2

k + g
, (34)

where ġ = dg(φ)
dφ . We now suppose the directivity of the

interference transmission is given by gain function

g(φ, φo) = 1 + ε cos(φ− φo), ε ∈ [0, 1]. (35)

This definition gives a simple cardioid pattern in the azimuth
variable φ, where φo denotes the orientation angle of the peak
antenna gain. The parameter ε defines the magnitude of the
peak gain, such that ε = 1 provides a peak power gain of two
and ε = 0 defines an isotropic radiation pattern.

Since, an analytic solution to (34) does not immediately
present itself, we employ numerical methods to solve the
differential equation here. Specifically, Euler’s explicit method
[27] lends itself to this example. We consider S discrete sam-
ples over the continuum between the source and destination
nodes, uniformly distributed over the interval [φ1, φ2], such
that the angular sample spacing is h = (φ2−φ1)/(S+1). Let
i ∈ {1, 2, . . . , S+2} denote the index of these samples, where
(φ(i), r(i)) represent the polar coordinates of the ith sample,
and i = 1 and i = S+2 are the source and destination indices,
respectively. By this definition, we have that φ(1) = φ1 and
r(1) is the radial distance of the source from the origin.

One may estimate ṙ(1) and invoke Euler’s explicit method
to return the calculated polar coordinates of the path described
by (34). We then successively approximate ṙ(1), over the
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Algorithm 1: Successive Route Approximation

initialize S, h, rd, r(S + 2)� rd, ṙl(1), ṙu(1), ξ;
while |r(S + 2)− rd|/rd > ξ do

ṙ(1) = (ṙl(1) + ṙu(1))/2;
// Euler’s Explicit Method
for i = 1 : S + 1 do

r(i+ 1) = r(i) + hṙ(i);
ṙ(i+ 1) = ṙ(i) + hF (φ(i), r(i), ṙ(i));
φ(i+ 1) = φ(i) + h;

end
return {r(S + 2)};
if r(S + 2) > rd then

ṙu(1) = ṙ(1);
else

ṙl(1) = ṙ(1);
end

end
return {φ}, {r}.

Fig. 4: Optimized routes in the presence of a directional
interferer. The directivity is a cardioid pattern with 3 dB peak
gain at π/4; k ∈ {1, 3, 5}.

interval [ṙl(1), ṙu(1)]8 until the calculated radial ordinate of
the destination node r(S+2) is within an acceptable fractional
deviation ξ of the actual radial distance rd. Associated pseudo-
code is outlined in Algorithm 1. It is clear from the description
of the algorithm that its complexity does not scale with the
number of nodes N in the network; instead, it scales linearly
in the number of samples S, which may be considerably less
than N in large-scale practical scenarios.

As an illustration of this approach, numerically optimized
routes for k ∈ {1, 3, 5} and ε = 1 are shown in Fig. 4 where

8The successive approximation is conditional on the variation of r(S +
2) being strictly increasing monotonic over the interval [ṙl(1), ṙu(1)]. We
determine the interval following a coarse search based upon incrementing
ṙ(1) over a larger estimated range, invoking Euler’s explicit method to return
the calculated polar coordinates of the path described by (34) and determine
the value of ṙ(1) that yields an acceptable approximation of the path.

Fig. 5: Illustration of successive route approximations (labelled
by iteration number) and standard deviation of radial offset
from optimal route for each iteration (inner figure).

S = 1000. We found that setting S = 50 gave satisfactory
results. With the direction of the peak gain set to φo = π/4,
we clearly observe longer routes between the source and
destination nodes in the half-plane interference is directed. We
further observe the optimal routes are repelled from the origin
in the direction of peak radiation.

Fig. 4 also depicts one path for each value of INR in
the lower half-plane. These are also stationary paths that
satisfy (34). Interestingly, we see the stationary paths veering
toward the interference source in the lower half-plane as a
result of the lower level of interference; corresponding to a
null in the cardioid antenna pattern. Since the gain function
g is independent of ṙ, the formal test for minima, given in
Proposition 2, equally applies to this scenario and provides
proof that the stationary paths in the upper and lower half
planes of Fig. 4 are minima of the functional (32). These
results provide an intuitive illustration of the continuum model
in a nontrivial setting with inhomogeneous interference effects.

Fig. 5 provides a visualisation of how the algorithm con-
verges to the final continuum path for the previously described
directional interferer scenario, where k = 5, ṙl(1) = 1.4,
ṙu(1) = 1.7 and ξ = 0.01. The inner figure also shows the rate
of convergence of the algorithm, plotting standard deviation of
the radial ordinates from the final continuum path as a function
of iteration number of consecutive route approximations. The
figure shows that, despite the low complexity of the algorithm,
the successive approximations converge to the final continuum
path in a relatively low number of iterations.

V. MULTIPLE INTERFERERS

We now consider application of the continuum model where
the multi-hop communications network is subject to inter-
ference from multiple independent point sources located in
R2. We consider all interferers are independently subject to
Rayleigh fading. The locations of the interferers are given by
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the polar coordinates pm = (rm, φm), where m ∈M and M
denotes the index set of interferers. We denote the Euclidean
distance between a point at (r, φ) and (rm, φm) by dm where
d2m = r2 + r2m − 2rrm cos(φ− φm).

If we extend the analysis detailed in section IV to multiple
independently faded interferers then (20) becomes

c(pi,pj) = e−
(
dij
r0

)η ∏
m∈M

[
1

1 + Ωm

]
, (36)

where Ωm = kdηijd
−η
m /rη0 . It is then relatively straighforward

to show that the functional for outage probability becomes

Po[r] = 1−

exp

(
−θ
∫ φ2

φ1

[
1 + k

∑
m∈M

1

dηm

]√
r2 + ṙ2dφ

)
. (37)

Remark. It can be shown that, repeating the analysis for
unfaded interferers also yields (37). The sum of interference
power, from Rayleigh faded interferers, will have a hypoexpo-
nential distribution. Conjecturing (as for the single interferer
case), that in the limit of infinite relay extent, the interference
field tends to mean of the distribution, then this will be
equivalent to the sum of unfaded interferers which is consistent
with the analysis.

Letting L denote the integrand in (37), considering the case
η = 2 and evaluating the Euler-Lagrange equation produces

F (φ, r, ṙ) := r̈ = r +
2ṙ2

r

− 2k(r2 + ṙ2)[Σ2(r2 + ṙ2)− Σ3ṙ]

(1 + kΣ1)r2
, (38)

where

Σ1 =
∑
m∈M

1

d2m
, (39)

Σ2 =
∑
m∈M

r − rm cos(φ− φm)

d4m
, (40)

Σ3 =
∑
m∈M

rṙ − rm[ṙ cos(φ− φm)− r sin(φ− φm)]

d4m
. (41)

Again, since an analytic solution to (38) does not immediately
present itself, we employ Euler’s method to solve for r, as
outlined previously (see section IV-B).

A. Two Interferers

We start with a simple scenario with two interferers, with
k = 3, located at polar coordinates (0, 0) and (1, π/2). Fig. 6
shows three local minimum paths: paths 1 and 3 are similar
to previous observations, but with symmetry about the straight
line containing the non-directive interferers, and path 2 passing
between the two interferers. This third minima is an expected
result in that arbitrary paths directly passing through either of
the interferers will yield total outage due to the singularities
in (37) at r = dm, m ∈ M , and a path existing between the
two interferers will intuitively yield a lower outage probability.
It should be noted that, although the path 2 is significantly
shorter than the paths 1 and 3, it will not necessarily yield

Fig. 6: Optimal routes for 2 interferer scenario. Interferers
located at positions (0, 0) and (1, π/2), indicated by crosses,
and k = 3. The stationary paths from uppermost to lowermost
are labelled 1, 2, and 3 respectively.

the lowest outage probability due to the closer proximity to
the interferers. For a given value of θ we can determine the
outage probability by substituting r and ṙ, corresponding to
each stationary path, into (37).

To provide further evidence to support the stationarity of
the three paths by an intuitive visualization, we consider a
range of arbitrary routes generated by linear interpolation9 of
radial ordinates of adjacent paths 1, 2, and 3 for fixed angle-
ordinates, and calculate the corresponding outage probability
of the interpolated paths. Paths above path 1 and below path
3 are simply generated by scaling paths with the function
[1+∆r/rp] cos(φ). rp is the radial ordinate of path-p ∈ {1, 3}
at respective angle-ordinates {π/2,−π/2} and ∆r is the
required deviation of the radial ordinate at respective angle-
ordinates {π/2,−π/2}. The effect of this route perturbation
on outage probability is illustrated in Fig. 7, clearly showing
that paths 1, 2, and 3 correspond to minimum stationary paths
and total outage occurs when paths pass through an interferer.

B. Three Interferers

We repeat the previous analysis with three interferers lo-
cated at polar coordinates (0, 0), (0.5, π/3) and (0.5, π/6)
with k ∈ {1, 2, 3}. Using Euler’s method to solve (38), as
before, we illustrate the resultant stationary paths in Fig. 8.
The upper and lowermost paths follow similar observations
with the single directive interferer scenario; an intuitive result
in that the three interferers with spatial bias is analogous
to a single interferer located at the origin having increased
directivity at angle π/4 in this example. We might pursue this
analogy to develop a single directive interferer approximation.

9Linear interpolation provides a straightforward method, and alternative
interpolation approaches would be equally applicable.
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Fig. 7: Verification of path stationarity by route perturbation.

Fig. 8: Stationary paths (solid lines) for 3 interferer scenario
for k ∈ {1, 2, 3}. Interferers are located at positions (0, 0),
(0.5, π/6), (0.5, π/3) (red crosses). The dashed lines represent
approximations for the stationary paths for a single equivalent
interferer located at position (0.322, π/4).

However, there is little advantage to this approach, since it
would not necessarily yield a reduction in processing com-
plexity in determining stationary paths.

Instead, we consider an alternative approximation for a
group of interferers. Specifically, one could consider a single
non-directive interferer located at an equivalent “centre of in-
terference”, given by 1

|M |
∑
m∈M pm, with an increased INR

given by k′ = |M |k. In this example, the single equivalent
interferer is located at (0.322, π/4). Using this approximation,
we apply (31) to determine stationary paths; avoiding the need
for the more cumbersome application of numeric methods
in solving (38). The resulting approximate stationary paths
are shown as dashed lines in Fig. 8. In this example, the
approximations appear to closely match the actual stationary

Fig. 9: Stationary paths (solid lines) for 3 interferer scenario
for k ∈ {1, 2, 3}. Interferers are located at positions (0, 0),
(0.683, 0), (0.683, π/2) (red crosses). The dashed lines rep-
resent approximations for the stationary paths for a single
equivalent interferer located at position (0.322, π/4).

paths.
We repeat this analysis for three interferers with increased

Euclidean distance between them but with the same equivalent
single interferer location as before. The results are shown in
Fig. 9, which clearly shows the approximate paths deviate to a
larger degree from the actual stationary paths. From this obser-
vation, we conjecture that the accuracy of the approximation
will degrade with increased variance in Euclidean distances
of the multiple interferers from the equivalent “centre of
interference”. We defer further analysis of this approximation
of complex spatial distributions of interferers to future work.

Returning to the three interferers, we observe path 2 me-
andering between interferers; as observed in the previous two
interferer scenario. Further, this path is largely independent of
INR close to the interferers, which can be attributed to the
effect on the path being analogous to two opposing “forces”
equally repelling the path. It is possible to identify other local
minima, e.g., meandering from the source towards the lower
two interferers and upwards between them and then passing
between the left most two interferers towards the destination.
However, this path will pass through both lower and upper half
planes and r(φ) becomes non-injective, requiring a change in
coordinate system, i.e., parametric Cartesian. Again, we defer
treatment of more complex scenarios to future work.

VI. SAMPLING THE CONTINUUM FOR PRACTICAL
DEPLOYMENTS

Having determined a methodology for the creation of an
equivalent continuous multi-hop route, we now distribute a fi-
nite number of relay nodes onto the stationary path, according
to four placement strategies. Here, we list these in increasing
order of processing complexity.
• Equi-angle: nodes distributed with constant angular offset
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• Equi-spacing: nodes distributed with constant distance
along the continuum

• Equi-Euclidean: nodes distributed with constant Eu-
clidean distance

• Optimum-angle: optimal angle ordinates of nodes are
determined using the fmincon function in Matlab R©.

We consider the single non-directive interferer scenario
discussed in section IV and assume that an outage probability
of 0.05 is a realistic target in a practical deployment. We firstly
determine the value of θ by rearranging (27) such that

θ = − log(1− Po[r])
I

, (42)

where I denotes the integral. We then calculate the length
scale

ro =

√
L

θ
, (43)

where L =
∫ φ2

φ1

√
r2 + ṙ2 dφ is the length of the continuum.

The discrete multi-hop outage probability, employing N re-
lays, is then calculated from

Po = 1−
N∏
n=0

exp

(
−N + 1

r20
.
‖p(n+ 1)− p(n)‖2

µ(‖p(n+ 1)‖)

)
, (44)

where the link quality function µ(·) is given by (28) with
η = 2. We vary N over the interval [5, 30] and calculate the
corresponding outage probabilities for each placement strategy
for k = 5. Results are shown in Fig. 10.

With increasing numbers of nodes, the equi-Euclidean relay
spacing converges to the equi-spacing case, which represents
uniform relay spacing over the continuum and which satisfies
the constant connectivity density condition that underpins our
continuum model. In this case, we observe a rapid convergence
to the Po = 0.05 asymptote. Since the equi-angle and optimum
angle scenarios violate the constant connection density condi-
tion, they do not exactly converge to the Po = 0.05 asymptote.
Notwithstanding this, the simplest form of relay placement
yields an acceptably low deviation from the required outage
probability. This is further highlighted in Fig. 11, where we
vary the effective SNR from the level that yields an outage
probability of 0.05 for the continuum.

The nonuniform angular distribution, according to the
optimum-angle placement strategy on the continuum, is il-
lustrated in Fig. 12 for the placement of 10 relay nodes (as
indicated by circle markers); we observe that the Euclidean
distance between adjacent nodes reduces where the receiving
node is closer to the interferer. This yields a lower outage
probability due to the interference being nonuniform over the
continuum, and reducing the Euclidean distance between adja-
cent relay nodes subject to higher interference will intuitively
yield lower outage probability overall. Fig. 12 also shows
node placement for 10 and 50 relay nodes where we allow
freedom to optimize both radial and angle ordinates using the
fmincon function in Matlab R©. In this discrete optimization
case, we provide an equivalence between the continuum model
and the discrete optimization by using the length scale defined
by

ro =

√∑N
n=0 ‖p(n+ 1)− p(n)‖

θ
, (45)

where θ is given by (42). This length scale is then substituted
into the objective function for outage probability given in
(44). In the limit of an infinite number of relays, where we
can consider the path of relay nodes forming a continuum,
then (45) converges to (43), i.e., as the sum of Euclidean
distances for each hop approaches the length of the continuum.
We observe that for the placement of 50 nodes, according
to this discrete optimization, their locations are close to the
continuum, which provides further evidence supporting the
utility of the continuum model to optimize relay placement
in large multi-hop networks.

In contrast however, the placement of 10 nodes shows a
reasonable divergence from the continuum. This observation
can be attributed to (45) and its relation to total available
transmit power (18), which is equally distributed across the
source and relay nodes, i.e., transmit power per relay node is
proportional to the sum of Euclidean distances. If the 10 nodes
were located on the continuum then the sum of Euclidean
distances would be less than the length of the continuum
and the nodes would therefore have lower available power,
which would result in lower SINR and therefore higher outage
probability for the multi-hop network when compared to the
continuum. It is intuitive that the optimum placement of relay
nodes would be further away from the continuum, which
would yield increased transmit power and lower interference,
and would mitigate the increase in node separation. This is
supported by observations in Fig. 10, where for lower numbers
of relays (N < 20) the outage probability for the discrete
optimization case (depicted by the dashed line) is higher than
when relays are located on the continuum according to the
optimum-angle placement strategy. As the number of nodes
increases, we see a convergence between the two placement
strategies.

In this example, the least complex strategy for relay node
placement on the continuum does not yield the optimal outage
probability for a multi-hop relay network. However, we can
conclude that the suboptimality of the continuum approach
and relay node placement strategies is not significant.

VII. CONCLUSION AND DISCUSSIONS

In this paper, we have demonstrated the effectiveness of the
continuum model for end-to-end outage probability calculation
when applied to multi-hop route optimization in a wireless net-
work subject to an inhomogeneous scalar field of interference.
Taking a canonical example of interference originating from a
single point in R2, we have shown that the scale of processing
complexity reduces from O(N3) for a discrete Lagrangian
method of constrained optimization (where N is the number
of relays) to O(S) in the continuum model, with S denoting
the number of samples used to approximate the continuous
path. Although analytic forms representing the optimal path do
not exist in general, it is possible to employ basic numerical
techniques to approximate it. From this approximation, it is
straightforward to sample the continuum with a finite number
of points (relays), thus yielding an acceptably low deviation
in outage probability relative to the optimum.

Several open problems remain. Analytic solutions to partic-
ular problems are desirable, and more complicated scenarios
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Fig. 10: Outage probability versus the number of relay nodes
placed on the continuum according to equi-spacing, equi-
angle, equi-Euclidean and optimum angle placement strategies
for k = 5. The dashed line represents the outage probability
for a relay placement according to the discrete optimization of
both radial and angular ordinates of relay nodes where k = 5.

Fig. 11: Outage probability and % deviation in outage proba-
bility from the continuous path versus SNR for five relay nodes
placed on the continuous path according to equi-spacing, equi-
angle, equi-Euclidean, and optimum angle placement strategies
for k = 5.

and cost functions should be considered. Furthermore, optimal
sampling of the continuum is also of interest. We hope this
work inspires others to consider continuum modelling in
related problems in communications and signal processing.

APPENDIX A
PROOF OF PROPOSITION 1

Substituting η = 2 into (30) and simplifying results in

ṙ =
1

C1

√
(k + r2)2 − C2

1r
2. (46)

Fig. 12: An example of the placement of 10 relay nodes
according to the optimum-angle placement strategy (circle
marker representing relay node location) and optimizing both
radial and angle ordinates of 10 and 50 relay nodes (relay
node locations represented by square and diamond markers
respectively).

Separating variables and integrating yields

φ = C1

∫
1√

(k + r2)2 − C1r2
dr. (47)

Defining the denominator in the integrand by function s(r) we
have

s(r) = (k + r2 + C1r)(k + r2 − C1r), (48)

and we can define the roots of s(r) by

r = ±C1

2
± 1

2

√
C2

1 − 4k. (49)

If we denote these roots by α, β, γ, δ then

φ = C1

∫
1

√
r − α

√
r − β

√
r − γ

√
r − δ

dr. (50)

Since α = −β and γ = −δ we can write

φ = C1

∫
1√

(α2 − r2)(γ2 − r2)
dr

= C1
1

αγ

∫
1√

(1−
(
r
α

)2
)(1−

(
r
γ

)2
)
dr.

(51)

Let t = r
α ; then dr = αdt, and we have

φ = C1
1

γ

∫
1√

(1− t2)(1− κ2t2)
dt, (52)

where κ = α
γ is the elliptic modulus. Given the integral in

(52) is the elliptic integral of the first kind, we have

φ(r) = ±C1

γ
F
(

sin−1
r

α
,
α

γ

)
+ C2, (53)

where u = F(ψ, κ) is the elliptic integral of the first kind in
Legendre normal form and C2 is a constant. Now, given that
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ψ = F−1(u, κ) = am(u, κ) is the Jacobi amplitude, we can
write

r(φ) = α sin

[
am

(
± γ(φ− C2)

C1
,
α

γ

)]
, (54)

which can be written in the form

r(φ) = α sn

(
± γ(φ− C2)

C1
,
α

γ

)
, (55)

where sn(u, κ) is the Jacobi elliptic function.

APPENDIX B
PROOF OF PROPOSITION 2

Given a functional

Po[r] = 1− exp

(
−θ
∫ φ2

φ1

√
r2 + ṙ2

µ(r)
dφ

)
, (56)

we consider the second variation to determine whether the
stationary paths, that satisfy the Euler-Lagrange equation,
correspond to minima. Specifically, we invoke Legendre’s
condition10,

J(r) =
∂2L

∂ṙ2
> 0, (57)

as sufficient proof of minima; L denoting the integrand of
(56). Evaluating J(r), gives

J(r) =
1

µ

[
1√

r2 + ṙ2
− ṙ2

(r2 + ṙ2)
3
2

]
. (58)

Since µ(r) ∈ R+, the condition (57) is satisfied when the right
hand bracketed expression of (58) is positive, which reduces
to the condition r > 0. Therefore, since r ∈ R+, the stationary
paths correspond to strict minima of the functional.
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and R. Soto, “Toward a robust multi-objective metaheuristic for solving
the relay node placement problem in wireless sensor networks,” Sensors,
vol. 19, no. 3, p. 677, 2019.

[24] S. A. Cook, “An overview of computational complexity,” Commun.
ACM, vol. 26, no. 6, pp. 400–408, Jun. 1983. [Online]. Available:
http://doi.acm.org/10.1145/358141.358144

[25] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz, “An overview
of constraint-based path selection algorithms for QoS routing,” IEEE
Communications Magazine, vol. 40, no. 12, pp. 50–55, Dec 2002.

[26] K. M. Alzoubi, Peng-Jun Wan, and O. Frieder, “New distributed
algorithm for connected dominating set in wireless ad hoc networks,”
in Proceedings of the 35th Annual Hawaii International Conference on
System Sciences, Jan 2002, pp. 3849–3855.

[27] K. E. Atkinson, An introduction to numerical analysis. John Wiley &
Sons, 2008.

[28] S. Arreckx, A. Lambe, J. R. R. A. Martins, and D. Orban, “A
matrix-free augmented lagrangian algorithm with application to large-
scale structural design optimization,” Optimization and Engineering,
vol. 17, no. 2, pp. 359–384, Jun 2016. [Online]. Available:
https://doi.org/10.1007/s11081-015-9287-9

[29] “Matlab R© Documentation Optimization Toolbox, fmincon,”
http://mathworks.com.



13

[30] S. K. Sharma and X. Wang, “Towards massive machine type communi-
cations in ultra-dense cellular IoT networks: Current issues and machine
learning-assisted solutions,” IEEE Communications Surveys & Tutorials,
2019.

[31] A. A. Shabana, Computational continuum mechanics. John Wiley &
Sons, 2018.

[32] J. Kelif, M. Coupechoux, and P. Godlewski, “Fluid model of the
outage probability in sectored wireless networks,” in 2008 IEEE Wireless
Communications and Networking Conference, March 2008, pp. 2933–
2938.

[33] J.-M. Kelif, M. Coupechoux, and P. Godlewski, “A fluid model
for performance analysis in cellular networks,” EURASIP J. Wirel.
Commun. Netw., vol. 2010, pp. 1:1–1:11, Jan. 2010. [Online]. Available:
http://dx.doi.org/10.1155/2010/435189

[34] H. Feng, L. Luo, Y. Wang, M. Ye, and R. Dong, “A novel minimal
exposure path problem in wireless sensor networks and its solution al-
gorithm,” International Journal of Distributed Sensor Networks, vol. 12,
no. 8, p. 1550147716664245, 2016.

[35] H. Elayan, R. M. Shubair, J. M. Jornet, and P. Johari, “Terahertz channel
model and link budget analysis for intrabody nanoscale communication,”
IEEE Transactions on NanoBioscience, vol. 16, no. 6, pp. 491–503, Sep.
2017.

[36] L. Felicetti, M. Femminella, G. Reali, and P. Liò, “Applications
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