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A Privacy-Preserving Asynchronous Averaging
Algorithm based on Shamir’s Secret Sharing

Qiongxiu Li, Mads Græsbøll Christensen
Audio Analysis Lab, CREATE, Aalborg University, Aalborg, Denmark

Abstract—Average consensus is widely used in information
fusion, and it requires information exchange between a set of
nodes to achieve an agreement. Unfortunately, the information
exchange may disclose the individual’s private information, and
this raises serious concerns for individual privacy in some ap-
plications. Hence, a privacy-preserving asynchronous averaging
algorithm is proposed in this paper to maintain the privacy of
each individual using Shamir’s secret sharing scheme, as known
from secure multiparty computation. The proposed algorithm is
based on a lightweight cryptographic technique. It gives identical
accuracy solution as the non-privacy concerned algorithm and
achieves perfect security in clique-based networks without the
use of a trusted third party. In each iteration of the algorithm,
each individual’s privacy in the selected clique is protected under
a passive attack where the adversary controls some of the nodes.
Finally, it also achieves robustness of up to one third transmission
error.

Index Terms—Distributed average consensus, Shamir’s secret
sharing, privacy-preserving, active attack, secure multiparty
computation

I. INTRODUCTION

Consensus has been intensively investigated over the past
decades since it is useful to solve problems in information
fusion, especially in distributed systems. Distributed average
consensus has been adopted in various applications such
as group coordination [1] and dynamic load balancing [2].
There are mainly three types of approaches to iteratively
achieve consensus without centralized coordination: average
consensus algorithms [3], general-purpose gossip algorithms
[4], [5] and methods based on convex optimization such as the
ADMM [6] and the PDMM [7] algorithms. All the algorithms
above require information exchange between certain entities.
However, this exchange may disclose the individual’s privacy.
In a distributed network, such as a sensor network, the nodes
of the network are interested in reaching an agreement but
they may also have concerns about protecting the privacy of
their data. For example, a group of individuals may want to
achieve a common opinion using a consensus algorithm; at
the same time, each individual is unwilling to trust the others
by revealing his/her own opinion [8]. This makes privacy-
preserving in consensus problem a crucial topic to address.

Two types of methods have been deployed to obtain privacy-
preserving solutions in distributed average consensus: dif-
ferential privacy [9] approaches, which try to maintain the
maximum accuracy from statistical database queries while
minimizing the chances of identifying its records; and secure
multiparty computation [10] approaches, which aim at jointly
computing a function over the inputs of a set of nodes

while keeping their inputs private. The underlying idea in
most existing differential privacy algorithms [11]–[15] is to
mask the secret values with zero-sum random noise during
the information exchange. This protects privacy without any
trusted third party while the average consensus is still achieved
by carefully design the noise insertion process. A statistical
analysis of maximum disclosure probability and estimation ac-
curacy is performed in [16]. However, Nozari et al. [13] proved
that exact average consensus and differential privacy cannot be
achieved simultaneously. Differential privacy based algorithms
are thus referred to as consensus perturbing approaches [17].
A new consensus preserving approach was proposed in [17]
that guarantees an exact average by employing obfuscation
via a single noise sample for each node while ensuring that
the allocated noise sum to zero. However, the obfuscation
noise samples have to be generated by a trusted third party,
something that is not always practical.

Other algorithms [18]–[21] obtain secure average consensus
based on techniques from secure multiparty computation, such
as homomorphic encryption (HE) schemes [22], [23] and
the garbled circuit (GC) technique [24], [25]. Homomorphic
encryption enables computation on the encrypted data. HE
was adopted in [20], [21] to guarantee that each node can
only access the encrypted values of other nodes. However, HE
requires a high computational complexity for encryption and
a trusted third party. Two GC based algorithms were proposed
in [18] to securely compare the state value of two nodes.
However, these are also computational expensive and requires
global information beforehand, and only asymptotic consensus
is obtained.

In this paper, Shamir’s secret sharing scheme, as known
from secure multiparty computation, is adopted in a distributed
asynchronous averaging algorithm reminiscent of [3] to solve
the problem of privacy-preserving distributed average consen-
sus. The main idea is to divide a secret into a number of
shares and distribute a share to each node in the network. The
secret can be reconstructed if and only if a sufficient amount of
shares are collected, otherwise no information of secret will be
disclosed. Compared to differential privacy based approaches
[11]–[15], the proposed algorithm is able to achieve perfect
security and exact accuracy at the same time. Since only
computations on polynomials are involved in Shamir’s scheme,
it has lower computational complexity compared to encryption
approaches such as the HE and GC of [18]–[21] and no
trusted third party is required. Moreover, the proposed method
considers both a general passive attack model and a weak



active attack model.

II. PRELIMINARIES AND PROBLEM SETUP

A. Privacy-preserving distributed average consensus problem

In a distributed system, we assume an undirect connected
graph G = (V, E) composed by the node set V = {1, 2, ..., n},
where E ⊆ V × V denotes the set of undirected edges. Every
two nodes can communicate with each other if and only if they
are connected neighbours, i.e., (i, j) ∈ E . The neighbourhood
of node i is denoted as di = {j|(i, j) ∈ E , j 6= i}. Each
node i holds an initial state value ai(0), which is its private
information, and the vector of the initial state values on the
network is denoted as a(0) = [a1(0), a2(0), ..., an(0)]T . The
main goal is to solve the following two challenges at the same
time:

1) Compute the average result of the private information

aave =
1

n

n∑
i=1

ai(0) (1)

in a distributed network without having any centralized
coordinator, here using an iterative average consensus
algorithm.

2) The private information of each node, ai(0), in the
network should be protected during the iterations of the
algorithm, hence preserving the privacy of the node.

B. Privacy concern and adversary model

The privacy concern addressed in this paper here pertains
to the initial state value held by each node in the network,
as it may be sensitive and undesirable for each node if this is
revealed to others. The adversary models adopted here include
a passive and a very weak kind of active attack model that
is interesting from a practical point of view. In the passive
attack model, also named honest-but-curious model, each node
follows the protocol correctly but so-called passively corrupted
nodes try to infer the honest nodes’ privacy. A number of pas-
sively corrupted nodes may cooperate to increase the chance of
inferring the other’s initial state value by sharing information.
In contrast, in an active attack model the corrupted nodes may
not follow the defined protocol and attempt to manipulate the
computation result by lying about the exchanged information
or refuse to act according to the protocol. In that case, we
would need to deal with these active attacks, and this can
be done in a number of ways: one possibility is to settle for
a solution that detects the errors and aborts the process in
time; but a more ambitious possibility would be to find a
protocol that does not only detect errors but is also able to
correct the errors automatically without aborting, a property
usually referred to as robustness. In what follows, we consider
a weaker model that is sufficient to achieve robustness towards
transmission errors.

III. SHAMIR’S SECRET SHARING SCHEME

In this section, a technique from secure multiparty com-
putation called Shamir’s secret sharing is introduced. Before
exploring the algorithm in detail, we illustrate the concept of

secret sharing with the following example [26]: several scien-
tists are working on a secret project where some confidential
documents are in a cabinet locked up with a pass-code. The
cabinet can be unlocked if (and only if) half or more of the
scientists are present. Shamir’s secret sharing scheme [27], first
proposed by Shamir in 1979, provides a powerful solution
to this problem. The principle of Shamir’s secret sharing is
Lagrange polynomial interpolation. It is based on the fact that
a prior unknown polynomial with degree at most t can be
reconstructed if its value at t+1 or more points are given, but
any number strictly smaller than t+1 will give no information
about the polynomial in other points.

Shamir’s secret sharing is defined as follows. Assume there
are n nodes, referred to as p1, p2, . . . , pn. The indices of these
nodes are denoted as N = {1, 2, ..., n}. Take a finite field F
of cardinality more than n, for example we take the field of
integers modulo a prime number p with p > n. In addition we
select an integer t < n. In order to share a secret s ∈ F , the
dealer (the node who knows the secret) proceeds as follows:

1) Polynomial construction: Selects coefficients {ci|i =
1, 2, . . . , t} uniformly at random in F and constructs
the polynomial f(x) = s + c1x + c2x

2 + · · · + ctx
t

mod p. Note that the secret is f(0).
2) Share distribution: Compute and distribute the secret

shares si related to pi as si = f(i) mod p, i ∈ N
Note that since the dealer is also one of the pi’s, this
also includes sending a share to itself. This share will
be needed when aggregating the information with the
shared secrets from other nodes later on.

3) Secret reconstruction: If a set of t+ 1 nodes, indexed
by Λ ⊆ N agree to reconstruct the secret, they can use
Lagrange interpolation

s =
∑
i∈Λ

risi. (2)

where ri is the Lagrange basis computed by

ri =
∏

j∈Λ\{i}

−j
i− j

. (3)

This Shamir’s secret sharing scheme divides the secret s into
several shares si, i ∈ N and distributes them to n different
nodes, and all shares and the secret are evaluations of a
polynomial of degree t. The privacy guarantee of Shamir’s
scheme is based on interpolation properties, implying that a set
of t or less shares gives no more information about the secret
than what was known a priori. Moreover, Shamir’s scheme is
also linear: it allows to “add secrets”. If two secrets s and
s′ are shared, possibly by different dealers, among the same
network of users by using polynomials f and f ′, then the
nodes can obtain a sharing of s + s′ by simply adding their
two shares. This works well because f + f ′ is still of degree
≤ t and f(i) + f ′(i) = (f + f ′)(i) mod p.

Finally Shamir’s scheme has certain error correction proper-
ties that can be used to detect errors, and in some cases, correct
them. This allows to correct certain types of active malicious
behaviour. More precisely it is a robust secret sharing scheme:



if t < n/3, then given the set of all n shares, if at most t
are erroneous then the Berlekamp-Welch algorithm [28] can
output the correct secret. This prevents a set of t < n/3
nodes to cheat when reconstructing the secret. Following the
above description, the correct polynomial constructed by secret
holder is f(x), and the received share set is denoted by
{(i, si), i ∈ N}. Since there might be some inconsistent shares
in the share set, instead of directly constructing f(x) based on
Lagrange interpolation, we set to find two other polynomials
e(x) with degree t and q(x) with degree 2t satisfying the
following equality

q(x) = e(x)f(x),

and where in addition e(x) (referred to as error locator
polynomial) satisfies that e(i) = 0 whenever f(i) 6= si. Under
the two conditions above, e(x) and q(x) satisfy the following
system of linear equations, in which the unknowns are the
coefficients of e and q:

sie(i) = q(i), i ∈ N . (4)

If we can solve the system and find e and q, then f(x) can be
constructed correctly as f(x) = q(x)/e(x). Since there are n
equalities available with 3t+1 coefficients (the coefficient et in
e(x) = e0 +e1x+ . . .+etx

t can be set as 1) in (4), the degree
t of the polynomial should be smaller than n/3. Thus, the
Berlekamp-Welch algorithm allows to correct the secret even
in the presence of t invalid shares in secret construction step
as long as t < n/3. However, it does not prevent malicious
behaviour (by even one malicious node) when creating the
shares, as this node could create more than n/3 errors in the
sharing process. This can be detected by the use of verifiable
secret sharing [29]. We will not be concerned about this in
this paper.

It is important to note that Shamir’s secret sharing scheme
is only applicable to fully connected graphs due to the fact
that each node has to distribute shares to all other nodes. This
affects the choice of distributed averaging algorithm and the
possibility of graph topology relaxation. We will address these
issue in the next section.

IV. PROPOSED APPROACH

To approach the challenges of having an algorithm that is
both distributed and privacy-preserving, we adopt a distributed
asynchronous averaging algorithm based on [3] to compute the
average iteratively, and Shamir’s secret sharing scheme is then
applied in each iteration of this algorithm to guarantee that the
privacy of each node is protected. The detailed algorithm is
described in Algorithm 1.

As previously mentioned, the application of Shamir’s secret
sharing scheme requires a fully connected graph, something
that was also observed in [30]. However, such graphs are
not always practical or scalable since they require a huge
number of connections. Therefore, we adopt a distributed
asynchronous averaging algorithm to relax the network topol-
ogy requirement: as shown in step 4 of Algorithm 1, Shamir’s
secret sharing scheme is applied in a fully connected subset

of nodes in each iteration. Thereby, we relax the impractical
topology requirement, from a fully connected to a clique-based
graph, and a preprocessing step named clique detection is
added. The clique Ci of node i should satisfy{

Ci ⊆ {di ∪ i}, ni > 2,

∀j, k ∈ Ci, j 6= k, (j, k) ∈ E ,
(5)

where ni denotes the total node number in clique Ci. We can
see that Ci need not be unique. The requirement ni > 2 is
simply due to the fact that one can always infer the other’s
initial state value with the final addition result if there are only
two nodes [31]. The clique-based graph topology is required
to guarantee that each node should have at least two neighbour
nodes and all these three nodes are interconnected. In practice,
the clique based graph is quite normal in distributed system
(e.g., in wireless sensor networks) since the connectivity
between certain nodes is typically enabled for nodes within
a fixed distance of each other.

Algorithm 1 Proposed approach
Clique selection:

1: For all the nodes i ∈ V in the whole network, find all
possible cliques Ci satisfy (5).

Distributed asynchronous averaging [3]:
2: For iteration k = 1, 2, 3, ..., T
3: Randomly activate one node i with uniform probability.
4: Node i choose one clique Ci and set the polynomial

degree t based on adversary model, compute the addition
result y(k) =

∑
i∈Ci

ai(k) securely in selected clique
based on Algorithm 2.

5: Update the node value as aj(k + 1) = y(k)
ni
, j ∈ Ci.

6: Repeat until convergence.
7: End

Algorithm 2 describes a solution to securely compute addi-
tion in the selected clique Ci based on the linearity of Shamir’s
secret sharing. The attack model is defined by parameter flag
in the algorithm description. If it is equal to 1, the algorithm is
robust to one third errors in share distribution, otherwise only
passive attack is considered. Concerning data representation,
Shamir’s secret sharing schemes works with integer numbers
modulo a prime. Thus, a sufficiently large finite field F is
selected to represent all the values in the modular domain
[0, p− 1]. Floating point numbers can be encoded as integers
by simply multiplying them with same scale factor and the
negative numbers can be represented with modular additive
inverse. A rounding operation is needed in step 5 of Algorithm
1 to make sure all the input values in Shamir’s secret sharing
are integers.

V. ANALYSIS

A comprehensive comparison of the proposed approach with
existing approaches is shown in Table I, where β denotes the
number of bits needed to represent encrypted cipher text [32].
We can see that the HE and GC approaches are computation-
ally expensive and require high communication bandwidths, as



Algorithm 2 Secure addition using Shamir’s secret sharing
Polynomial construction:

1: All nodes i ∈ Ci agree a polynomial degree t based on
adversary model (active or passive).

2: Each node pi randomly choose coefficients c1i , c
2
i , ..., c

t
i on

F , construct polynomial
fi(x) = ai + c1ix+ c2ix

2 + ...+ ctix
t mod p.

Input sharing:
3: Each node pi computes shares fi(j) and distributes shares
fi(j) to all other nodes {j | j ∈ Ci, j 6= i}, respectively.

4: Each node pi receives shares fj(i) from all other nodes
j ∈ Ci, j 6= i}, respectively.

5: Each node pi computes sum li based on received shares
li =

∑n
j=1 fj(i).

6: Each node pi broadcasts li.

Output construction:
7: If flag = 1 (active attack model)
8: Each node pi defines q(x) and e(x) (see Section III).
9: Each node pi computes q(x) and e(x) based on share

set {(i, li), i ∈ Ci} with (4) and the desired polynomial
f(x) is determined by q(x)/e(x).

10: Each node pi computes the result y = f(0).
11: Else (passive attack model)
12: Each node pi computes ri using (3).
13: Each node pi computes the result y =

∑
i∈Ci

rili.
14: End

the cipher texts after encryption usually require much longer
bit length than plain texts. With the application of Shamir’s
secret sharing, the proposed algorithm outperforms differential
privacy based approaches by having perfect security and
identical accuracy with the non-privacy concerned algorithms
[3]–[7]. Moreover, the involved functions are simpler than
HE and GC based approaches and no trusted third party
is required. The proposed approach also addresses a more
challenging adversary model than the other approaches. For
each iteration, where a node i is activated with ni nodes in
its clique, the proposed approach needs extra communication
times compared to the other approaches because of the share
distribution process.

A. Security analysis under passive and active attack

There is a difference between the privacy concern from a
cryptographic point of view and a practical point of view.
From the cryptographic point of view, the security definition
imposes a very strong demand, namely, that a protocol is only
secure if the adversary does not learn more information about
the inputs of the honest nodes than what is implied by the
output and the inputs of the corrupted nodes. From this point of
view, the computation in each clique (see Algorithm 1), when
considered in isolation, is information-theoretic (i.e., perfect)
secure [27], but the full computation in Algorithm 1 would not
be considered secure, since the adversary can learn the partial
sums of the honest nodes’ initial state values in some cliques,

and this is not implied by the average result of the full network
and the corrupted nodes’ initial state values. However, from a
practical point of view, as already stated in Section II-B, we
are trying to protect the individual node’s private information,
and each individual node’s initial state value is not revealed
even if the sum of them are known.

For passive attacks, the privacy of the honest node will be
protected as long as it has one honest neighbour in its clique. In
a weaker model of active attacks, where the nodes act honestly
when distributing the shares, but errors (either intentionally or
unintentionally) can occur later on, the proposed algorithm can
successfully reconstruct the correct result as long as at most
one third of the shares are erroneous. This model captures
cases such as unintentional errors produced when exchanging
information. To the best of our knowledge, this is the first
algorithm that obtains robustness against active attack in
privacy-preserving distributed average consensus computation
with both error detection and correction.

B. Security analysis under dynamic participation

One possible concern here is whether a clever combination
of the information obtained in successive iterations can help
to infer the privacy of the individual honest nodes, similarly
to the privacy analysis in a dynamic setting [33] where nodes
may come and leave between executions. This is, however,
difficult to analyze. Note that since the inputs of the nodes
involved in different iterations are dynamically updated, this
is different from the case considered in [33] wherein inputs
are static. We remark that it is difficult (without additional
knowledge) for a passive adversary to ascertain whether any
two iterations are successively related due to the random nature
of the node activation and the clique selection in Algorithm
1. It is, however, possible that such situations can occur, and
future research should investigate this further.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a privacy-preserving distributed
averaging consensus algorithm based on Shamir’s secret shar-
ing to compute the consensus in a distributed manner over a
clique based network while protecting the individual privacy.
The proposed algorithm is able to achieve both accurate
consensus and perfect security at the same time, it does not
depend on any trusted third party, and the computational
complexity is lightweight. The adoption of Shamir’s secret
sharing allows to maintain the privacy of each individual node,
i.e., as long as the clique selected in an iteration has at least
2 honest nodes. Moreover, robustness against up to one third
errors is obtained under an active attack model. A drawback
of the proposed approach is the higher communication times
required by Shamir’s secret sharing compared to, for example,
differential privacy based methods. Future work will focus on
how to reduce the overall communication times.



TABLE I
COMPARISONS WITH EXISTING APPROACHES

Proposed HE [20], [21] GC [18] Differential privacy [11]–[15]
Accuracy Identical Identical Dependent on step size Degraded with noise
Security Perfect Computational Computational Differential privacy

Attack model Passive/Active Passive Passive Passive
Involved function Polynomial Exponential Exponential Linear

Trusted Third Party No Yes No No
Communication bandwidth per time O(1) O(β) O(β) O(1)
Communication times per iteration O(n2

i ) O(ni) O(ni) O(ni)
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[23] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” Advances in
Cryptology–CRYPTO, pp. 643–662, 2012.

[24] A. C. Yao, “Protocols for secure computations,” FOCS, pp. 160–164,
1982.

[25] A. C. Yao, “How to generate and exchange secrets,” FOCS, pp. 162–
167, 1986.

[26] C. Liu, “Introduction to combinatorial mathematics,” 1968.
[27] A. Shamir, “How to share a secret,” Comm. Assoc. Comput. Mach., vol.

22, no. 11, pp. 612–613, 1979.
[28] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block

codes,” Dec. 1986.
[29] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret

sharing and achieving simultaneity in the presence of faults,” FOCS,
pp. 383–395, 1985.

[30] S. Goryczka and L. Xiong, “A comprehensive comparison of multiparty
secure additions with differential privacy,” IEEE Trans. Dependable
Secure Comput., vol. 14, no. 5, pp. 463–477, 2017.

[31] S. C. S. Cheung and T. Nguyen, “Secure multiparty computation
between distrusted networks terminals,” EURASIP J. Inf. Security, vol.
2007, no. 1, pp. 051368, 2007.

[32] R. L. Lagendijk, Z. Erkin, and M. Barni, “Encrypted signal processing
for privacy protection: Conveying the utility of homomorphic encryption
and multiparty computation,” IEEE Signal Process. Magazine, vol. 30,
no. 1, pp. 82–105, 2013.

[33] D. Kononchuk, Z. Erkin, J. C. van der Lubbe, and R. L. Lagendijk,
“Privacy-preserving user data oriented services for groups with dynamic
participation,” in ESORICS. pp. 418–442, 2013.


