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Abstract—Sound event localization frameworks based on deep
neural networks have shown increased robustness with respect
to reverberation and noise in comparison to classical parametric
approaches. In particular, recurrent architectures that incorpo-
rate temporal context into the estimation process seem to be
well-suited for this task. This paper proposes a novel approach to
sound event localization by utilizing an attention-based sequence-
to-sequence model. These types of models have been successfully
applied to problems in natural language processing and auto-
matic speech recognition. In this work, a multi-channel audio
signal is encoded to a latent representation, which is subsequently
decoded to a sequence of estimated directions-of-arrival. Herein,
attentions allow for capturing temporal dependencies in the
audio signal by focusing on specific frames that are relevant for
estimating the activity and direction-of-arrival of sound events
at the current time-step. The framework is evaluated on three
publicly available datasets for sound event localization. It yields
superior localization performance compared to state-of-the-art
methods in both anechoic and reverberant conditions.

Index Terms—sound event localization, recurrent neural net-
work, sequence-to-sequence model

I. INTRODUCTION

Sound event localization (SEL) considers estimating the
spatial positions of sound events from audio signals. The
definition of a sound event refers to a sound produced by a
variety of sources, e.g. speech or a musical instrument, which
oftentimes is a time-varying quantity with respect to volume
and position. Many applications rely on accurate SEL, as it is
an important processing step for speech enhancement in hear-
ing aids [1], acoustic monitoring for industrial applications [2],
robotics [3] and many others. The importance of localization
and tracking algorithms for audio signal processing has also
been stressed during the recent LOCATA challenge [4], where
a wide range of contributions tackled this problem in a diverse
set of challenging scenarios, cf. [5] for details.

However, many classical frameworks for SEL are based
on parametric approaches, e.g. the steered response power
phase transform (SRP-PHAT) [6] or multiple signal classifi-
cation (MUSIC) [7] methods. Furthermore, approaches using
learning-based techniques like logistic regression [8] or inde-
pendent component analysis [9] have also been proposed.

In addition, approaches utilizing deep neural networks for
SEL have been developed recently. For instance, the method

described in [10] proposed a convolutional neural network
(CNN) operating on the phase of the audio input in the
short-time Fourier transform (STFT) domain to predict the
direction-of-arrival (DoA) of a sound event. The work of
He et al. [11] introduced a similar framework for robotics
applications, which used features derived from SRP-PHAT as
input to a CNN-based SEL system. This approach was further
developed in [12], where the complex STFT spectrum was
used as input to a CNN, followed by a recurrent neural network
(RNN) based on gated recurrent units (GRUs). A spatial
pseudo spectrum, similar to classical parametric approaches
like MUSIC, was obtained from the recurrent output of the
network. This representation was used to obtain DoA estimates
for each sound event. Further extensions towards sound event
localization and detection (SELD) were proposed in [13],
which considered a joint estimation of sound type and spatial
location. This system was recently adapted to tackle dynamic
scenarios with moving sound sources [14]. Models that exploit
temporal context for SEL have shown superior performance
compared to conventional feed-forward networks [13]–[15].

This paper proposes a recurrent architecture for SEL in
scenarios with multiple, potentially overlapping sound sources,
via an attention-based sequence-to-sequence approach to han-
dle temporal dependencies. Such models were initially pro-
posed in the context of neural machine translation [16],
but have also been utilized for other tasks like automatic
speech recognition [17]. Compared to a conventional recurrent
network architecture, the attention mechanism facilitates an
improved capturing of the temporal structure in the input
sequence. This is achieved by exclusively focusing on parts
of the audio signal that are relevant for predicting the spatial
source locations at the current frame. This also enables the
model to account for long-term dependencies when localizing
sound events, which is generally not possible with classical
methods that rely on the first-order Markov assumption [18].

II. SYSTEM OVERVIEW

The proposed SEL model is based on a recurrent encoder-
decoder architecture with attentions [16]. Therefore, it is
termed Attention-based Deep REcurrent Neural-network for
locALIzing souNd Events (ADRENALINE) in this work, to
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stress the underlying design for the desired application. The
model essentially consists of three building-blocks: a CNN-
based feature extraction, the encoder RNN and the decoder
RNN with an attention mechanism, which are depicted in
Fig. 1. These components will be described in the following.

A. Feature extraction

To extract input features from a spectral representation of
acquired audio signals, the CNN-based feature extractor from
SELDNet [13] was utilized in this work. The ADRENALINE
architecture operates on fixed-length chunks of audio data:
Given an acoustic waveform with C channels, it is divided
into non-overlapping chunks of 500ms duration. An STFT,
using a 2048-point Hamming window with a frame length
of 40ms and 20ms shift, is performed within each chunk.
The complex spectrum is separated into its magnitude and
phase components, which are concatenated to an input tensor
of dimension K × L × 2C, where K = 25 is the number
of frames within one chunk and L = 1024 is the number of
non-redundant bins in the complex spectrum.

The input tensor is fed into a CNN with three layers. Each
layer is composed of 64 filters with kernel size 3×3, followed
by batch normalization, rectified linear units (ReLUs) and
max-pooling with kernel size 1 × 8 in the first two layers
and 1 × 2 in the third layer. The output of the third layer is
reshaped to yield K×Dy feature sequences, where Dy = 512
is the feature dimension. The elements of the feature sequence
will be denoted as yk′ ∈ RDy , where k′ = 1, . . . , K represent
the encoder time indices.

B. Encoder

A conventional RNN-based encoder architecture is used in
the ADRENALINE framework. The input feature sequence
is fed into a bidirectional RNN, which yields a hidden state
representation hE,k′ ∈ R2Dh at each time step, according to

hE,k′ = fE(hE,k′−1, yk′). (1)

Due to the bidirectional implementation of the RNN, the
hidden state is composed of the states obtained during the
forward and backward passes [19], which is not explicitly
shown in Eq. (1), cf. [16] for details. A GRU with a hidden
dimension of Dh = 64 is used as the underlying RNN cell. It
is initialized with zeros for k′ = 0.

C. Decoder and attention mechanism

As shown in Fig. 1, at each decoder time index k, the
decoder takes as input a vector zk, which is composed of
a decoder output vector xk−1 from the previous time-step and
a context vector ck, generated by the attention mechanism.
The context vector is computed according to

ck =

K∑
k′=1

αk′hE,k′ , (2)

where αk denote the attention weights. Each attention weight
is obtained via a scaled dot-product [20] between the encoder

hidden state and the corresponding previous decoder hidden
state, followed by a softmax activation function

αk′ = SOFTMAX
( 1√

2Dh

hT
E,k′hD,k−1

)
. (3)

The decoder output xk represents the current information
about detected sound events and their locations. It is composed
of three elements: a vector γk ∈ RS indicating source activity
and vectors of corresponding azimuth and elevation angles,
φk ∈ RS and ϑk ∈ RS , respectively. Each DoA corresponds
to the source activity indicator in the same row of the source
activity vector. Their dimension S indicates the maximum
number of sources that the framework can handle simulta-
neously. It is set to S = 4 in this work. This representation
was inspired by the SELDNet architecture [13], which utilized
a similar output structure, but additionally performed sound
event detection, which is omitted in the framework proposed
here. The joint decoder output xk ∈ R3S is obtained by
stacking the individual output elements into a single vector.
Hence, by utilizing the result from Eq. (2), the decoder input
vector can be represented as zk =

[
ck xk−1

]T ∈ R2Dh+3S .
The decoding step for estimating source activities and

locations can now be expressed via the decoder RNN

hD,k = fD(hD,k−1, zk), (4)

whose outputs are γk = σ(W γhD,k), φk = WφhD,k and
ϑk = WϑhD,k, with weights W γ , Wφ and Wϑ, where
σ(·) denotes the sigmoid nonlinearity.

D. Loss function

The decoder output representation introduced in the previ-
ous section requires a form of loss that is tailored to the SEL
task. Therefore, a loss function with two components

LSEL = LACT(γ̂, γ) + λLDOA(φ̂, ϑ̂, φ, ϑ, γ) (5)

is proposed, where λ ∈ R+ is a scaling factor. The discrete
decoder time index k is omitted here for notational conve-
nience. Eq. (5) incorporates a binary cross-entropy loss term
LACT(γ̂, γ) [21, Chap. 5] evaluating the difference between
estimated and ground-truth source activities γ̂ and γ, respec-
tively. The second term is based on the DoA error [12]

ξ = arccos
(
sin(φ̂) sin(φ)+cos(φ̂) cos(φ) cos(ϑ−ϑ̂)

)
, (6)

which measures the angle between the estimated azimuth φ̂
and elevation ϑ̂ and the ground-truth DoA, given by φ and
ϑ. The trigonometric functions in Eq. (6) are applied element-
wise, so that the resulting vector ξ contains a single DoA error
for each potential source. The DoA error showed slightly better
performance when dealing with angular values, compared to
the more commonly used mean squared error (MSE) loss.

As only active sources shall be considered in the DoA
loss, the DoA errors of non-active sources are omitted by
incorporating the ground-truth source activity vector as

LDOA(φ̂, ϑ̂, φ, ϑ, γ) =
1

S
ξTγ, (7)
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Fig. 1. General overview of the ADRENALINE model architecture. The box on the left shows an exemplary encoding process for three discrete time-steps
from k′ = 1, . . . , 3, where yk′ denotes the observed input features and hE,k′ corresponds to the hidden state of the encoder GRUs. The attention weights
αk′ are computed via scaled dot products between the encoder hidden states and the corresponding decoder hidden state hD,k−1 from the previous decoding
time-step. A context vector ck is derived as a weighted sum of the encoder hidden states, using the attention weights. The output of the decoder xk is
composed of the source activity indicator γk and the corresponding source DoAs, comprising azimuth φk and elevation ϑk . A concatenation of the decoder
output from the previous time-step and the current context vector serves as input to the decoder, as shown in the box on the right.

which effectively blocks the gradient flow for non-active
sources during back-propagation.

It should be noted that the DoA loss presented in Eq. (7)
does not take potentially occurring source permutations be-
tween consecutive time-steps into account. Therefore, the
DoA error given in Eq. (6) is computed for all possible
source permutations during the calculation of the loss. This is
computationally feasible, as the maximum number of sources
set to S = 4 is small and all computations can be run in
parallel. The lowest resulting DoA error is then selected for
evaluating Eq. (7). Similar approaches have also been used in
other application domains, e.g. for speech separation in [22].

III. EVALUATION

The proposed ADRENALINE framework is evaluated on
three publicly available datasets and compared to related SEL
baseline methods. The program code is accessible online1

and the detailed training procedure and experimental setup is
described in the following.

A. Datasets

The ANSYN, RESYN and REAL datasets introduced
in [13] were selected as suitable evaluation corpora in this
study. These datasets provide a number of first order Am-
bisonic format recordings that is large enough to train deep
learning models for SEL.

The first two were synthesized using simulated anechoic
and reverberant impulse responses, whereas the latter utilized
impulse responses recorded in real environments. All datasets
are assembled with a similar structure: they comprise three
subsets each, corresponding to either no, at most two, or

1https://github.com/rub-ksv/adrenaline

at most three temporally overlapping sources. Each subset
provides three cross-validation splits with 300 audio files each.
These files are further divided into 240 files for training and
60 for validation. All audio files are sampled with 44.1 kHz,
have a duration of 30 s and are encoded in the Ambisonics
format. The audio signals in the synthetic datasets were created
using sound events from 11 different classes, covering the full
azimuth range and an elevation range from −60◦ to 60◦. For
the recorded impulse response dataset, sound events from 8
classes were used for synthesizing the audio signals. Herein,
again the full azimuth range was covered and the elevation
range was restricted between −40◦ and 40◦.

B. Baseline methods

Two baseline methods were employed in this work to
compare the performance of the proposed model to similar
SEL frameworks. The first baseline model builds upon the
CNN feature extraction stage described in Sec. II-A. It simply
adds a fully connected layer, which outputs source activity and
DoA vectors. This is a feed-forward model with no recurrent
elements and will be referred to as CNN in the experiments.

Additionally, a variant of the SELDNet architecture [13]
is utilized as a second baseline. As the name suggests, it
was initially proposed for SELD tasks, predicting location
and class of a sound event, where it achieved state-of-the-art
performance. It shares the same CNN-based feature extraction
stage with the proposed ADRENALINE framework and is also
based on bidirectional GRUs. The main difference between the
methods is that SELDNet does not incorporate any attention
mechanisms. Instead, it directly utilizes the output of the
recurrent layers for estimation.

To enable a fair comparison to the proposed ADRENALINE
framework, the SELDNet model is modified here by removing



TABLE I
FRAME RECALL IN PERCENT GROUPED BY DATASET. THE METRIC IS

AVERAGED OVER ALL SUBSETS AND CROSS-VALIDATION FOLDS.

ANSYN RESYN REAL

CNN 87.48 71.91 72.07
SELDNet(m) 85.78 72.46 69.63
ADRENALINE 84.83 71.18 72.08

information about the sound class from the output layer. This
essentially yields a system output identical to the one proposed
in Sec. II-C. The model is referred to as SELDNet(m) in the
following, denoting the modified output.

C. Performance metrics

Frame recall and DoA error are used as metrics for evaluat-
ing SEL performance. The frame recall metric [13] describes
the percentage of frames, where the estimated number of active
sources matches the ground-truth. During evaluation, a source
is considered active if the corresponding element in the source
activity vector exceeds a threshold of 0.5. The DoA error is
computed as described in Eq. (6), where only active sources
are considered. The Hungarian algorithm [23] is used to solve
the assignment problem between multiple estimated DoAs and
the ground-truth, which yields the smallest possible DoA error.

D. Experimental setup

All models were implemented in PyTorch [24]. The baseline
model parameterization was chosen as reported in [13]. The
parameters of the proposed ADRENALINE model were spec-
ified as described in Sec. II. The SEL loss function given in
Eq. (5) was used with a scaling factor of λ = 1 for optimizing
all evaluated models. All model parameters were initialized
using the Kaiming initialization method from [25]. Training
was conducted using the AdamW optimizer [26] with batch-
size 256 and a learning rate of 0.0002. The learning rate was
varied by adopting the scheduling scheme proposed in [20],
which resulted in an increased training stability. Separate
models were trained for each cross-validation fold, utilizing
early stopping with a maximum number of 200 epochs.

IV. RESULTS AND DISCUSSION

The experimental results are summarized in Tab. I and
Fig. 2. The Mann-Whitney-U test [27] was used to show
statistically significant differences in DoA error between the
proposed ADRENALINE framework and the baselines. This
nonparametric test was chosen, because the application of a
Shapiro-Wilk test [28] on the resulting DoA errors indicated
that the individual samples are not normally distributed.

The resulting DoA errors indicate that the proposed
ADRENALINE framework outperforms both baseline meth-
ods on all three datasets, where the performance differences
are statistically significant in most cases. This shows that
employing a sequence-to-sequence architecture for SEL yields
improved localization performance compared to standard re-
current architectures and feed-forward networks in anechoic
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Fig. 2. DoA errors obtained in all cross-validation folds for all three datasets,
shown as grouped box-plots. Asterisks indicate a statistically significant
difference, where ∗∗∗ denotes p < 0.001.

as well as reverberant environments. The performance benefit
of the ADRENALINE framework is especially prominent in
scenarios with multiple overlapping sources.

Incorporating temporal information is crucial for effectively
performing SEL. Even though conventional GRU or long-
short term memory (LSTM) architectures can capture long-
term temporal dependencies, the attention-based framework
utilized here seems to provide a better utilization of temporal
information for predicting source activity and DoAs. A possi-
ble reason for this is the ability of attention-based sequence-
to-sequence models to incorporate multiple relevant time steps
into the estimation, without taking into account their specific
temporal order. This is not possible for (bidirectional) recur-
rent architectures, as they can only operate on the currently
accumulated information in the forward and backward passes.
Fig. 3 depicts exemplary attention maps for all three evaluation
corpora, which show that the attention weights have a larger
spread in reverberant environments. This seems reasonable, as
DoA estimation under increased reverberation requires longer
temporal contexts.

All methods yield comparable performance for estimating
the correct number of sources. This is reflected by the frame



0 10 20

0

10

20

k

k
′

ANSYN

0 10 20

k

RESYN

0 10 20

k

REAL

0

0.2

0.4

0.6

0.8

1

Fig. 3. Attention maps produced by the ADRENALINE model for exemplary
chunks from all three evaluation datasets. The index k′ denotes the encoder
time index, whereas k is the decoder time index.

recall metric shown in Tab. I. The frame recall seems to
degrade significantly in reverberant environments. This indi-
cates that reverberation does not only provide a challenge
for localization, but also hinders all investigated models in
distinguishing between concurrent sound events.

V. CONCLUSION AND OUTLOOK

This paper presents an attention-based sequence-to-
sequence architecture for sound event localization. Compared
to previous models based on standard recurrent neural network
architectures, the proposed model better utilizes temporal
information for estimating the activity and direction-of-arrival
of sound events. An experimental evaluation on publicly avail-
able datasets for sound event localization supports the initial
hypothesis that exploiting attentions for temporal focusing
aids estimating the location of sound events. In addition, the
proposed framework still provides many interesting opportu-
nities to develop this approach further. By acknowledging the
latest progress in natural language processing, a transformer-
based architecture might also be applicable as an alternative to
sequence-to-sequence models for sound event localization. Ad-
ditionally, the incorporation of probabilistic estimates through,
e.g., differentiable Bayesian techniques might further broaden
the application range of the proposed framework.
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[17] Z. Tüske, K. Audhkhasi, and G. Saon, “Advancing sequence-to-sequence
based speech recognition,” in INTERSPEECH 2019, 2019.

[18] S. Chakrabarty, K. Kowalczyk, M. Taseska, and E. A. P. Habets,
“Extended Kalman filter with probabilistic data association for multiple
non-concurrent speaker localization in reverberant environments,” in
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2014, pp. 7445–7449.

[19] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, Nov 1997.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, pp. 5998–6008. Curran
Associates, Inc., 2017.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016, http://www.deeplearningbook.org.

[22] D. Yu, M. Kolbæk, Z. Tan, and J. Jensen, “Permutation invariant training
of deep models for speaker-independent multi-talker speech separation,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 241–245.

[23] H. W. Kuhn and B. Yaw, “The Hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

[24] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
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