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Abstract—In this paper we present a network for foreground
segmentation based on background subtraction which does not
require specific scene training. The network is built as a refine-
ment step on top of classic state of the art background subtraction
systems. In this way, the system combines the possibility to define
application oriented specifications as background subtraction
systems do, and the highly accurate object segmentation abilities
of deep learning systems. The refinement system is based on a
semantic segmentation network. The network is trained on a
common database and is not fine-tuned for the specific scenes,
unlike existing solutions for foreground segmentation based on
CNNs. Experiments on available databases show top results
among unsupervised methods.

Index Terms—Background subtraction, semantic segmentation
networks, refinement network

I. INTRODUCTION

The process of identifying each pixel in an image as part
of foreground or background is usually known as ’foreground
segmentation’. This is widely employed for many applications
such as detecting intruding objects in surveillance systems,
automatically monitoring large and crowded areas such as
airports, or traffic monitoring at roads. It is also a very useful
tool for analysing human activities, and even editing videos
for the cinematographic industry by changing or isolating their
background.

This problem has been widely studied during the last
decade. Classical methods are based on modelling the back-
ground per-pixel distribution and identifying the foreground
pixels as those that are an exception to their corresponding
background model. Recently, deep neural networks have been
used, both for modeling the background and for the subtraction
step. While outstanding results are obtained using neural
networks, these methods use a training or fine-tuning step
based on the sequence to evaluate. In this paper, we explore
the possibility of using neural networks for background sub-
traction without need for training or fine-tuning on the testing
scenes, as in real scenarios it is not feasible to require a user-
provided detailed segmentation for a usually high number of
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frames, or even to devote a few hours to train the network
with non labeled background.

For this, we propose to use a two-steps scheme. The first
step uses a conventional foreground detection that produces
a rough approximation to the foreground. These conventional
systems have the possibility to accommodate to different re-
quirements of the application scenario, such as strong shadows,
multi-modal background, or delay in incorporating moving
objects into the background. However, their results in a global
framework are always below the ones obtained with supervised
methods that use the groundtruth for training, as shown in the
Results section of www.changedetection.net. Thus, in a second
step, we use the output of this system as input to a refining
convolutional neural network (CNN). It is based on a semantic
segmentation network which is trained to accurately segment
the objects that are present in an input mask.

Our contributions can be summarized as follows:
• We propose a new two-steps system for foreground

segmentation which provides results superior to the ones
obtained by conventional, non-learning based methods.

• We compare different off the shelf methods for back-
ground subtraction as input to the refinement CNN.

• We show that a Semantic Segmentation Network trained
to refine the rough segmentation produced by a conven-
tional background subtraction method can improve the
results of background subtraction, without specific scene
training.

• We provide an example of how learning based techniques
can be used in conjunction with non-learning methods.
This allows to introduce high level features according to
the application and scenario, which currently cannot be
used in most deep learning systems.

II. STATE OF THE ART

A. Classical approaches to foreground detection by back-
ground modeling and subtraction

Classical approaches model the background of the scene
and then perform a comparison with the current frame for
classifying each pixel as foreground or background.

Background is sometimes modelled as a single image com-
puted as the temporal average or median over a set of frames
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[1]. However, most methods use a more complex, probabilistic
approach, capable of handling challenging situations such
as illumination changes or slight variations due to outdoors
conditions. Some examples for that are the Gaussian Mixture
Model (GMM) [2], or the Kernel Density Estimation (KDE)
[3]. Currently, the methods that obtain the best results for
background modeling ( [4], [5]) are based on robust median
estimation and robust PCA, respectively. Joint background
modeling and subtraction has been approached in many dif-
ferent ways. Stauffer and Grimson [2] proposed one of the
first methods which is still widely used. This method models
each pixel PDF as a mixture of Gaussians and uses an on-
line approximation to update the model. By determining the
Gaussian distributions that correspond to the background, each
pixel can be labeled as foreground or background.

The great performance of that algorithm gave rise to a
serial of different methods that applied slight variations for
improving its weakest points [6], [7], [8].

However, not all classical approaches are parametric nor
based on Gaussians. One example for these alternative meth-
ods is [9] that directly estimates the distribution for all
background pixels instead of its parameters, thus performing
in a non-parametric way and making use of the pixel’s
histogram distribution. Another non-parametric method for
moving object detection is presented in [10]. It achieves high
quality detections even in complex background scenarios and
for non-completely static scenes, by dynamically estimating
the bandwidth of the kernels used in the modeling part and
selectively updating the background model. This method is
improved in [11] by modeling not only the background, but
also the foreground. At each new frame, for this approach,
the spatial positions of the foreground data are updated using
a particle filter that predicts its most probable movement.

B. Deep learning approaches to foreground detection

Attempts to obtain a good foreground/background pixel
classification by applying deep learning techniques can be di-
vided in those that focus on a successful background modeling
and those that use this technique in the classification part. An
extensive review can be found in [12].

1) Background modeling: Successful techniques for back-
ground modeling using deep learning include those based
on Auto Encoder Networks [13] and on fully convolutional
networks used for semantic segmentation such as U-Net, or
Generative Adversarial Networks [14]. All these background
modeling techniques rely on learning the background model
for a specific scene, and thus cannot be easily updated to adapt
to continuous changes in the background, incorporation of
moving objects that remain static, etc. For this reason, although
they provide excellent results with available databases, they are
hard to apply to real scenarios conditions.

2) Background subtraction: Trying to improve traditional
methods, many researchers have applied deep learning for
classifying each pixel as foreground or background. Examples
are [15], which is trained on the test scene or [16], which

is trained with a subset of all the sequences of the database,
which are used both for training and testing.

More recently, Generative Adversarial Networks have also
been used. By considering the work of Phillip et al. [17] as a
basis, BScGAN [18] is presented as a method for performing
background subtraction and obtaining a foreground mask for
each frame. The background model is a background image
which is computed as the median of a set of images from
the sequence. For the classification network, the structure of
generator and discriminator from [17] is mostly preserved, but
both original and background images are fed as input to the
generator for obtaining the foreground mask. Although the
obtained results are extraordinarily good, the method uses half
of each sequence for training and tests it on the other half of
the same sequence, thus lacking generalization and requiring
annotations for most frames in a sequence.

III. FOREGROUND SEGMENTATION NETWORK

Our proposed Foreground Segmentation Network is de-
signed as a two steps procedure, with the objective to obtain a
generic network that does not require learning from a specific
scene. The first step detects the foreground objects accord-
ing to the reasoning applied for the specific scenario, using
classical background modeling techniques and an exception to
model approach. This step provides a rough detection which
is used as input to a refining network that is only trained
once with a public domain labeled database, and that can
be applied to any scenario without further adjustment. The
global system thus combines the segmentation criteria and
adaptability to background changes of the method used for
the rough approximation with the characteristic power and
capability of deep learning techniques for producing a much
more precise segmentation.

A. Foreground detection

As a rough Foreground object detection a general method
with a very low computational load has to be used. Although
it can be substituted for any other more sophisticated detection
module, we have preferred to use a common and widely
available system in order to focus on the improvements of
the refinement network. Three different methods provided
by OpenCV have been considered. Although employing a
different algorithm, they all use background models that are
updated over time. The examples used show how specific
application criteria can be introduced in this first stage. For
instance, shadow suppression in the first one, or a high recall in
the third. These methods also contain user-defined parameters
which allow for a faster adaptation to background changes, the
introduction in the background model of foreground objects
that remain static or the degree of variability of the background
depending on the scenario.

a) Mixture of Gaussians (MOG): This method, pre-
sented in [6], tackles the main downsides of the classical
Stauffer and Grimson approach [2]: improve the learning at the
beginning, especially in busy environments where the frames
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used for initializing the model contain a lot of foreground
objects, and introduces shadow suppression.

b) Mixture of Gaussians2 (MOG2): The second method
considered [7] is also based on [2], but the update equations
are adapted, and the number of Gaussian components for each
pixel model is automatically selected.

c) Non Parametric Model (NPM): This method ( [9])
combines statistical background image estimation and per-
pixel Bayesian segmentation. It is designed to maximize
the F2-score, since for its specific application high recall is
preferred over high precision.

B. Refinement network

Inspired by the works of semi-supervised Video Object
Segmentation [19], our refinement network produces the fore-
ground object segmentation guided by an input mask. In [19]
a CNN designed for semantic image segmentation is used
to produce label propagation in a video object segmentation
context. For each new video frame the network is guided
towards the object of interest by feeding in the previous
frame mask estimate. The segmentation of the object in the
first frame is manually provided. The network is trained with
annotated images in order to produce a refined mask output
for the current frame, given a rough mask estimate from the
previous frame t-1. In order to produce accurate results, the
network is fine-tuned on the manual annotation provided for
the first frame and its augmentations.

In our work the refinement network takes as input the rough
mask provided by one of the foreground detection methods
described in Section III-A, which is concatenated to the current
frame. A convolutional neural network designed for semantic
segmentation is trained to refine this rough mask, given the
current input image. Unlike [19], no training is performed on
the specific sequence, thus no manual annotation is required
at test time. In our case the guided semantic segmentation
network is trained to classify pixels in two classes (foreground
and background). The structure of the network is that of a U-
Net. In particular, we have used the structure of the Generator
in [17]. Details of the architecture can be found in this paper.
In our case, the encoder is fed by 2 concatenated images
resized to 256x256, corresponding to the current RGB image
to segment and the rough binary mask approximation obtained
by the Foreground detection block III-A. The output is a single
image of the same size, corresponding to the refined mask. For
training, we apply Data Augmentation to the input images to
the Refinement network, which we detail in the following.

a) Data Augmentation: As it will be described in next
Section, databases available for training are large in the
number of frames, but reduced in the number of videos.
As a consequence there is a high risk of overfitting to the
training scenarios. To reduce this effect a large Data Aug-
mentation is introduced, using the Albumentations package
[20]. Each frame is converted using: horizontal flipping (50%
probability), scaling (up to 0,5), rotation (20 degrees limit),
shifting, random cropping to 256x256, gaussian noise addition,

perspective transformation, blurring, brighthess and contrast
transformation.

IV. RESULTS

A. Datasets

Two datasets are used for the experiments: CDNet-2014 [21]
and LASIESTA [22]. The first one is used for training the
network and finding the optimal set of parameters, while the
second, which is significantly smaller, is only used for testing
and comparing with other State of the Art methods.

CDNet-2014 dataset contains a total of 53 video sequences,
divided in 11 categories representing challenging scenarios
such as dynamic background, hard shadows, low framerate or
night videos, among others. Each of these categories contains
from 4 to 6 sequences of 600 to 7999 frames with spatial
resolutions varying from 320x240 to 720x576.

Annotation is provided for a number of frames for each se-
quence, which usually goes from 1/4 to 1/2 of the total number
of frames. Training of the network and hyperparamenter search
are carried out using these annotated frames.

In order to prove the applicability of the network in new
datasets without further training or adaptation, a different
dataset is used for testing. We use for this aim LASIESTA
dataset. This dataset contains 10 different categories, 6 fo-
cused on indoor scenarios and the other 4 recorded in the
outdoors. For each of these categories, two sequences with
lengths ranging between 225 and 1400 frames are given. These
sequences have a spatial resolution of 352x288. Each frame
has its corresponding annotation, with the foreground moving
objects.

We will use the stantard evaluation metrics for assessing
the performance of background subtraction algorithms: Preci-
sion, Recall and F-measure. While Precision indicates which
amount of pixels detected as foreground are correct, recall
gives a measure for the quantity of actual foreground pixels
that are being correctly classified by the method, and F-
measure gives a good general perspective of both criterion,
thus being the one used for ranking methods and deciding the
best one to use.

B. Experiments

In the first place, a train-validation partition of CDNet-2014
is used for the hyperparameter search experiments and for
comparing different input masks. The selected hyperparam-
eters and method of generation for input masks are used for
training a refining network which can be used on a general
scenario. We provide results for our CDNet validation partition
and for LASIESTA database.

1) Network Hyperparameters: Hyperparameters are
searched with a CDNet partition which is built by randomly
selecting one sequence in each category for validation and the
remaining ones for training. This gives 11 sequences in the
first subset and 42 in the second, thus maximizing the amount
of frames used for training but maintaining the diversity in the
validation subset. The refinement network is trained taking
as additional input the rough masks produced by MOG2,

707



and Data augmentation is applied as described. The batch
size used for training is 5. The Adam solver, with learning
rate of 0.0001 provides best results. Multiple Cross Entropy
is generally used for Semantic Segmentation. However, in
our case, with only two classes, we have the option to use
Binary Cross Entropy or Dice loss, which is more directly
related to the F-measure that we are trying to optimize. The
experiments performed show similar performances, although
slightly better for the Dice loss. Convergence of the network
occurs around 15 epochs, as shown in Figure 1. This Figure
shows the F-measure results for 20 epochs, for Training and
Validation data, using the parameters detailed and Dice loss.

Fig. 1. F-measure evolution for training and validation partitions

2) Effect of Foreground detection: Three classical methods
are considered for the Foreground detection block: NPM [9],
MOG [6] and MOG2 [7]. Since all of these methods need
some frames for initializing, the next variation is applied to
each of them: First, they are initialized with frames in the first
half of the sequence (a maximum of 120, 200 or 500, respec-
tively) for extracting masks for the whole sequence. However,
only the masks for the second half of frames are considered.
Then, the sequence is reversed and the initialization is done
on the second half for finally obtaining the masks for the
remaining frames using the same reasoning. We emulate in
this way the results that we could expect in a real scenario
where the initialization frames can be discarded and we would
only consider the results after a few minutes of initialization
time.

The results of these methods for each category is first
studied. The method that performs the best in the categories
where the background is completely static, there is no color
camouflage and neither the framerate of the sequence or
the velocity of the objects change drastically, is NPM. This
method was designed for a specific purpose with many con-
straints and performs well when they are fulfilled. However,
the model is not prepared for dealing with more challenging
situations, leading to a much lower performance in the other
categories. Nonetheless, it should be noted that its goal, as
stated in the paper, is to maximize F2-measure, meaning that
high recall is prioritized over high precision, and it definitely
is the model that obtains the highest recall in almost all of
the categories. Similarly, the one with highest precision in
almost all categories is the MOG method. Moreover, due
to its high adaptability to changes in scene, it outperforms
the other two methods also in F-measure for the categories
in which the background is less static. Finally, thanks to

the adaptive number of Gaussians used to model each pixel,
MOG2 seems to obtain the best masks in those cases where
the image drastically changes from one frame to another and
also when the appearance of the foreground object is most
similar to the background one. It is also the method with
the highest F-measure considering all the sequences in the
validation partition, as it can be observed in Table I, first row.

Next, the network is trained for 15 epochs with the previ-
ously selected hyperparameters, using generated masks from
these methods as input. As it is shown in Table I, the
refinement network increases the performance in all cases.
Overall, MOG2 is the method that gets the better output masks.
In the second row of this table we can compare the F-measure
at the output of the Refinement Network, for each method for
obtaining the input masks.

Method NPM MOG MOG2
F-measure 0.35 0.50 0.53
F-measure Refined 0.64 0.75 0.80

TABLE I

3) Comparison to State of the Art methods: The exper-
iments performed in the previous Section, confirm the im-
provement of the refinement network, and that best results
can be achieved by selecting a rough mask detection method
according to the scenario of interest. However, to assess the
improvement in a general setting, the network trained with
MOG2 input, which provided the best results, is used on
a new test dataset (LASIESTA). This last set is made of
20 different video sequences corresponding to 10 different
challenging scenarios. Some of these scenarios, like rainy
or snowy conditions are similar to the ones in the training
database. Other categories like occlusions or camouflage do
not have an equivalent category in this database.

The F-measure obtained for each of the categories and the
average for all sequences are reported in Table II. In this table,
the performance for most methods that have been reportedly
tested on this dataset are given, all run with a single set
of parameters along the sequences and without any kind of
training on this same dataset. Additionally, the metrics for the
masks that are used as input to the mask refinement network
are also provided, obtained by using the MOG2 algorithm [7].
Finally, the last column of the table correspond to the output
of the method developed in this work. The evaluation method

[23] [2] [8] [10] [24] [11] [7] Ours
SI 0.82 0.83 0.90 0.78 0.88 0.88 0.67 0.88
CA 0.75 0.82 0.83 0.73 0.89 0.84 0.68 0.89
OC 0.88 0.88 0.95 0.85 0.92 0.78 0.72 0.92
IL 0.48 0.29 0.23 0.79 0.84 0.64 0.41 0.82

MB 0.74 0.76 0.86 0.72 0.84 0.93 0.68 0.78
BS 0.47 0.36 0.53 0.58 0.68 0.66 0.55 0.85
CL 0.85 0.86 0.87 0.91 0.82 0.92 0.56 0.80
RA 0.85 0.78 0.87 0.80 0.89 0.86 0.67 0.90
SN 0.59 0.60 0.38 0.45 0.17 0.77 0.38 0,86
SU 0.75 0.72 0.71 0.73 0.85 0.72 0.71 0.87

AVG 0.72 0.69 0.71 0.73 0.78 0.80 0.60 0.86
TABLE II
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used is the one proposed in the database official webpage, in
which only proper background pixels and foreground pixels
corresponding to moving objects are considered.

Fig. 2. Examples for the evaluation of the mask through the mask refinement
method. First column: Input images. Second column: Corresponding anno-
tation. Third column: Input mask obtained by MOG2. Forth column: Mask
generated by the mask refinement network.

Analysing these results, it can be observed that the network
has learnt how to properly generalize to unknown sequences
even from a different nature than the ones used for training.
The network has actually learnt how to refine the masks
obtained with a classical method, increasing the performance
in a 26%, reducing its noise, filling up holes in figures
and discarding the background pixels that were mistakenly
detected as foreground (Figure 2). Comparing to the other
State of the Art methods, the presented mask refinement
network seems to introduce a valuable approach. While it
obtains a 86% of F-measure in all of the categories, it is the
one with the best performance in several categories, and in the
overall results.

V. CONCLUSIONS

This paper presents a novel approach for successfully sub-
tracting the background from any sequence without requiring
the annotation for any of its frames. Previous methods attempt-
ing this task with CNNs use a huge amount of annotations
and specific training for each individual sequence. Our method
uses a semantic segmentation network adapted to classify into
two classes, foreground and background. It is composed of two
steps: the first one uses a conventional foreground detection
method to provide a rough approximation to the masks. Then,
the CNN uses this approximation as a guidance and outputs a
refined foreground mask.

We compare different classical methods for obtaining the
inputs of the network. Using the best method and the optimal
set of parameters, the network is trained on one dataset
(CDNet-2014) and tested in another one (LASIESTA), obtain-
ing satisfactory results. The network obtained captures more
detail in the foreground masks than the state of the art methods
and detects more compact foreground components.
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