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Abstract—Atrial electrograms are often used to gain under-
standing on the development of atrial fibrillation (AF). Using
such electrograms, cardiologists can reconstruct how the de-
polarization wave-front propagates across the atrium. Knowing
the exact moment at which the depolarization wavefront in the
tissue reaches each electrode is an important aspect of such
reconstruction. A common way to determine the LAT is based
on the steepest deflection (SD) of the individual electrograms.
However, the SD annotates each electrogram individually and is
expected to be more prone to errors compared to approaches
that would employ the data from the surrounding electrodes to
estimate the LAT. As electrograms from neighboring electrodes
tend to have rather similar morphology up to a delay, we propose
in this paper to use the cross-correlation to find the pair-wise
relative delays between electrograms. Instead of only using the
direct neighbors we consider the array as a graph and involve
higher order neighbors as well. Using a least-squares method,
the absolute LATs can then be estimated from the calculated
pair-wise relative delays. Simulated and clinically recorded elec-
trograms are used to evaluate the proposed approach. From the
simulated data it follows that the proposed approach outperforms
the SD approach.

Index Terms—local activation time, electrogram, cross-
correlation

I. INTRODUCTION

Atrial fibrillation (AF) is a common cardiac arrhythmia
which is associated with a high overall risk of mortality [1].
One of the common ways to study the mechanism involved in
initiation and progression of AF is through high resolution
atrial electrograms recorded by electrode arrays positioned
directly on the heart surface during open-chest surgeries [2].
Atrial electrograms are used by cardiologists to reconstruct the
depolarization wave-front propagation patterns in the atria that
can potentially be used to reveal electropathological substrates
related to AF. To provide these propagation patterns, we first
need to estimate the exact moment in which the depolarization
wavefront in the tissue reaches each electrode. These moments
are denoted as local activation times (LATs).

The steepest negative deflection in a unipolar electrogram is
known to coincide with the depolarization of the tissue under
the electrode and is commonly annotated as the LAT [3].
However, this approach annotates each electrogram individ-
ually and is expected to be more prone to errors compared to

approaches that would employ the data from the surrounding
electrodes to estimate the LAT. Moreover, using purely the
derivative of the measured signal to estimate the LAT makes
it susceptible to spikes added by noise and other artifacts. To
overcome this issue, several techniques have been previously
proposed in the literature to improve LATs. A review of which
can be found in [4]. Since electrograms are the measurement
of the same wavefront at different positions and have rather
similar morphology, except for a time shift, we propose to
use the cross-correlation to find the pair-wise delays between
each electrogram and its neighbors. Existing cross-correlation
methods use only the closest neighboring electrodes to create
pairs for which delays are calculated, see [5]. The resulting
delays between the electrodes then do need to be converted to
absolute times.

In this paper the application of the cross-correlation for LAT
estimation is further investigated. Specifically, the benefits
of not only cross-correlating electrode pairs that are close,
but also those with a larger distance are of interest. This is
done by creating a framework to define higher-order neighbors
while evaluating the electrode array as a graph. The cross-
correlation is then applied to pairs of electrodes to estimate
the delay in their LATs. Next, a least-squares method is used
to transform these relative activation times to absolute LATs.
Finally, this method is applied to simulated and clinically
recorded electrograms and the results are compared to the
steepest deflection method.

II. METHODS

A. Definition of higher-order neighbors

The multi-electrode electrogram recording provides spatial
information that can be exploited to achieve better LAT
estimation. In this study, we present the spatial connections
between the electrodes as a graph. The electrodes in our
recording array are spaced as a regular square grid. This grid
is defined by the adjacency matrix A,

Ai,j =

{
1 if j ∈ N(i)

0 otherwise
, (1)
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where i, j ∈ 1, 2, . . . ,M are the electrode’s indices, and N(i)
contains the neighboring electrodes of electrode i in the grid.
MatrixA only represents the connections between neighboring
electrodes, or, in other words, one hop away in the grid graph.
In this paper on LAT estimation, we introduce a new adjacency
matrix Ξ(P ) where the nodes (electrodes) are connected over
at most P hops of the template grid, defined as

Ξ(P ) =

P∑
p=1

Ap, (2)

where the order P of Ξ(P ) determines over what distances the
nodes are connected by edges.

B. Cross-correlation of electrograms

We use the normalized cross-correlation (NCC) denoted by
ρ(i,j)(s) to determine the time differences (delays) ∆̂ in LATs
of electrode pairs. The NCC between two electrograms xi(k)
and xj(k) as a function of the shift in samples s is calculated
as

ρ(i,j)(s) =
∑
k

(xi(k)− µi) (xj(k − s)− µj)√
σ2
i σ

2
j

, (3)

where µi, µj are the means and σ2
i , σ

2
j are the variances of

xi(k) and xj(k), respectively. The delay between electrograms
i and j, ∆̂(i,j), is then estimated as

∆̂(i,j) = arg max
s

ρ(i,j)(s), for Ξ
(P )
i,j 6= 0. (4)

C. From delays to absolute times

To estimate the per-electrode LATs, we express the inter-
electrode delays ∆̂ as a linear system of the absolute LATs
as 

∆̂(1,2)

∆̂(1,3)

...
∆̂(i,j)

 =


τ2 − τ1
τ3 − τ1

...
τj − τi

 +


ε(1,2)
ε(1,3)

...
ε(i,j)

 (5)

where τi is the true activation time of electrode i and ε(i,j) is
the estimation error. Since the time delays are calculated for
all the links in the graph represented by Ξ, we can use the
graph’s incidence matrix B of size M × L to rewrite Eq. (5)
as 

∆̂(1,2)

∆̂(1,3)

...
∆̂(2,3)

...
∆̂(i,j)


= BT



τ1
τ2
τ3
...
τi
...
τj


+



ε(1,2)
ε(1,3)

...
ε(2,3)

...
ε(i,j)


, (6)

where the incidence matrix is given by

BT =



−1 1 0 0 . . . 0 . . . 0
−1 0 1 0 . . . 0 . . . 0

...
...

...
...

...
...

0 −1 1 0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . −1 . . . 1


. (7)

The system in vector form can be represented as

d = BT τ + e (8)

where τ of size M×1 contains the absolute LATs, and d and
e of size L × 1 contain the delays and the estimation error,
respectively. Note that for a connected graph, the rank of the
incidence matrix B is one less than its maximum rank, in this
case the rank is M−1. Therefore Eq. (8) is rank deficient and
thus under-determined.

To estimate the LATs in τ , we assume the error to be zero-
mean homoscedastic, so

E[e] = 0, Cov(ε) = cI (9)

where 0 ≤ c < ∞. We can now use the Gauss-Markov theo-
rem [6] to derive the best linear unbiased estimator (BLUE),
also called the ordinary least squares (OLS) estimator, to find
the absolute LATs τ̂ , which is,

τ̂ = (BBT )−1Bd. (10)

Since BT is not full rank, this cannot be solved directly. To
overcome this issue, we can use the Moore-Penrose inverse
[7] of matrix BT , i.e., (BT )†, to find the solution

τ̂ = (BT )†d. (11)

This pseudoinverse can be calculated for rank-deficient matri-
ces using the singular value decomposition (SVD).

III. RESULTS

In this section we present results based on simulated elec-
trograms in Sec. III-A, as well as results based on clinical
measurements in Sec. III-B.

A. Simulated electrograms

We use the approach described in [8] to generate simu-
lated electrograms, which uses the Courtemache model of the
human atrial myocytes [9], together with the mono-domain
reaction-diffusion model of the atrial action potential [10] to
generate simulated electrograms. The cells are assumed to be
on a 2D uniform square grid with a spacing ∆x and the
electrode array is assumed to be positioned on a parallel plane
of the cells and at a constant height.

Two sets of simulated tissues were used to generate simu-
lated electrograms. Tissue T1, T2 and T3, whose conductivity
maps are shown in the first row of Fig. 1, have specific
patterns of blocking or slow conduction. Theses patterns
are less realistic, but are used to exaggerate the differences
between the methods of LAT estimation. We also use more
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Fig. 1. The simulated conductivity maps with different patterns of blocks and
slow conduction for generating simulated electrograms.

realistic conductivity maps, shown in the second row of Fig. 1,
to generate simulated electrograms. These are examples of
the different patterns that mimic decoupling of conduction
between areas of atrial tissue [11]. This can be caused by
excessive deposition of collagen due to fibrosis in the heart. As
can be seen in Fig. 1, S1 contains spots of no conduction, S2
contains lines of no conduction and S3, contains a combination
of both. Note that we use 10 randomly generated realizations
of each pattern and use their average results for consistent
performance evaluation.

To compare the result of LAT estimation, we use three
different methods: (i) The steepest deflection (SD) method, (ii)
the normalized cross-correlation on the electrograms of P th
order neighbors (i.e., with a maximum of P hops), referred to
as NCC-P, and (iii) the normalized cross-correlation on the first
temporal derivative of the electrograms of P th order neighbors
(i.e., with a maximum of P hops), referred to as NDCC-P.
After estimating the delays using NCC and NDCC, we use
the OLS method in Eq. (10) to obtain the LATs. In addition
to the error in LAT estimation averaged over all electrograms,
we also estimate the error in fractionated electrograms only
(those having multiple negative deflections).

Fig. 2 shows the resulting root mean square error (RMSE)
and standard deviation, averaged over the datasets T1, T2, and
T3. The RMSE is normalized with respect to the RMSE of the
SD approach, therefore the RMSE of the SD equals one for
every tissue pattern. For the NCC-P and NDCC-P approach we
show the performance as a function of P. That is, an increased
order of neighbors P for the connectivity graph Ξ(P ). As
can be seen, using higher order neighboring pairs (larger P ),
decreases the errors in LAT estimation methods. This implies
increasing P in Ξ(P ) and thus increasing the distance in the
grid graph over which cross-correlations are calculated. The
NCC method’s error keeps decreasing well below the error
of the SD method. This happens when taking all electrodes
into account, but also when calculating the RMSE only for
electrodes where the signal is fractionated as shown in the right
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Fig. 2. The normalized RMSE in LAT estimation by different methods
for simulated electrograms using the tissue patterns T1, T2, T3. The error
bars indicate the standard deviation. Left: error in LAT estimation for all
electrograms. Right: error in LAT estimation for electrodes with fractionated
electrograms only.

TABLE I
THE RMSE (IN MS) IN LAT ESTIMATION BY DIFFERENT METHODS FOR
SIMULATED ELECTROGRAMS USING THE TISSUE PATTERN T1, T2, T3 IS
SHOWN. THE FIRST THREE ROWS SHOW THE PERFORMANCE OVER ALL
ELECTRODES, AND THE BOTTOM THREE ROWS (DENOTED BY (F)) FOR

ELECTRODES WITH FRACTIONATED ELECTROGRAMS ONLY.

SD NCC-1 NCC-10 NDCC-1 NDCC-10
T1 2.41 3.00 1.27 2.21 2.26
T2 11.54 32.17 5.26 10.02 11.03
T3 0.93 10.31 0.49 4.24 0.85
T1 (f) 8.66 6.60 2.41 7.87 8.24
T2 (f) 27.69 40.08 12.46 23.72 26.47
T3 (f) 3.44 3.34 0.87 5.49 3.47

subgraph of Fig. 2. The NDCC method’s error does decrease
when higher-order neighbors are used but it converges to a
value only marginally below the error of the SD. It seems
the NDCC method does benefit from having a larger number
of delays to calculate the LAT, but not as much as the NCC
method. The first temporal derivative of the data, as used in
SD and NDCC, can be seen as a high-pass filtered version
of the original electrogram. The high frequency components,
such as steep deflections, will thus be more prominent than
the low frequency components. The cross-correlation will then
focus on these steep deflections instead of on the complete
electrogram and the resulting estimate is in the end similar
to that of the SD method. Table I provides an overview of
non-normalized RMSEs (in ms) for the individual T patterns.

Fig. 3 shows the results of LAT estimation using the
different approaches for LAT applied on S3. The same trend as
for the T-type tissues is visible. The performance on the other
S sets is similar to that of S3. Table II shows the RMSE (in
ms) in LAT estimation for each method. As can be seen in all
tissue patterns, using the higher order neighbors to determine
delays using the NCC methods gives the best performance in
every simulation examined.

B. Clinically recorded electrograms

For an evaluation using clinical recordings, we use an
electrode array to record electrograms from the surface of
human atria during open chest surgeries. The array is manually
placed by the surgeon at different locations on the atria to
provide an almost complete mapping of the whole atria. The
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Fig. 3. Normalized RMSE for 10 randomly generated tissues with the S3
pattern. The error bars indicate the standard deviation. Left: error in LAT
estimation for all electrograms. Right: error in LAT estimation for electrodes
with fractionated electrograms only.

TABLE II
THE MEAN RMSE (IN MS) FOR THE 10 RANDOMLY GENERATED TISSUES
WITH THE S1, S2 AND S3 PATTERNS. THE FIRST THREE ROWS SHOW THE
PERFORMANCE OVER ALL ELECTRODES, AND THE BOTTOM THREE ROWS

(DENOTED BY (F)) FOR ELECTRODES WITH FRACTIONATED
ELECTROGRAMS ONLY.

SD NCC-1 NCC-10 NDCC-1 NDCC-10
S1 0.69 0.82 0.40 0.85 0.44
S2 1.26 3.16 0.89 2.11 1.08
S3 1.63 3.07 1.06 2.09 1.29
S1 (f) 1.27 1.31 0.88 1.44 0.98
S2 (f) 2.73 4.55 1.94 3.73 2.47
S3 (f) 2.64 4.12 1.83 3.37 2.31

electrode array used for our measurements consisted of 8×24
electrodes with inner-electrode distance of 2 mm resulting
in 192 signal channels. The four electrodes on the corners
are not used for epicardial measurements, but serve other
purposes. The recorded signals are amplified with a gain of
1000, bandpass filtered (0.5-400 Hz), sampled at 1 kHz and
quantized with 16 bits. Pleas see [2] for more details on the
array specification and the mapping procedure.

To evaluate the performance of our proposed approach in
LAT estimation of clinically recorded electrograms, we use
the SD approach and the proposed NCC-10, which provided
the best results in the last section. Since we do not have
access to the true LATs of the clinically recorded electrograms,
we only compare the results of the different approaches with
each other while no direct measure of their accuracy will be
presented. We use two sets of electrograms recorded from two
patients undergoing coronary artery bypass surgery containing
one atrial beat during sinus rhythm (SR) in a time window of
200 ms and discuss the results.

The resulting LATs of the first electrogram array, recorded
from the left pulmonary vein site, is presented in Fig. 4. As can
be seen, in the highlighted electrodes (column 20, row 4 and
5), using the SD results in an 8 ms difference in LAT between
these two electrodes, while using NCC-10 results in a 3 ms
delay between these electrodes. The middle-top subplot of
Fig. 4 also shows the electrogram for the sensor at column 20
and row 5 (solid line) and for comparison also the electrogram
for the sensor at column 20 and row 4 (dotted line). The right-
top subplot of Fig. 4 shows the same electrograms, but then
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Fig. 4. The per electrode LATs (in ms) estimated using SD (top left) and
NCC-10 (bottom left). Top-middle and top-right the highlighted electrograms
and bottom-middle and bottom-right their shifted version with respect to the
estimated LATs.

the electrogram for the sensor at column 20 and row 4 is
highlighted (solid line) and the electrogram for the sensor at
column 20 and row 5 (dotted line) is given for comparison.
The middle-bottom and middle-right subplots show the same
electrograms, but now shifted in time, to compensate for the
delays estimated by NCC-10 and SD, respectively. As can be
seen, the signals are more synchronized when using NCC-10
which can potentially suggest a more accurate LAT estimation.

The second electrogram array used in this study, is recorded
from the left atrium of a patient with a history of paroxysmal
AF. The results are presented in Fig. 5 in a similar way as
in Fig. 4. The signals of the two highlighted electrodes (row
7, column 11 and 12) are compared in the top-middle and
top-right subplot. The top-left and bottom-left subplots show
that SD detects a difference of 9 ms in the LATs, while NCC-
10 detects a difference of 4 ms, respectively. As before, the
signals are shifted according to the estimated delays and the
resulted plots are also shown in Fig. 5 (bottom-middle and
bottom-right subplot). Because the point of steepest deflection
is at the beginning of the downward slope in one electrode
and at the end of the slope in another electrode, SD detects
a larger delay. On the other hand, NCC-10 matches the entire
signals of many electrograms in the array with each other,
which results in a smaller delay estimation.

IV. CONCLUSIONS

In this paper we introduced a new approach for LAT
estimation in atrial electrograms by using normalized cross-
correlation between the higher-order neighbors in electrode
pairs. We then compared the performance of our proposed ap-
proach with the traditional steepest deflection approach using
simulated electrograms. The results show that using normal-
ized cross-correlation over higher order neighbors improves
the performance of LAT estimation and out-performs the
reference method, which is based on the steepest deflection.
Moreover, we provided examples of applying our proposed
method and the reference method (steepest deflection) on
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Fig. 5. The per electrode LATs (in ms) estimated using SD (top left) and
NCC-10 (bottom left). Top-middle and top-right the highlighted electrograms
and bottom-middle and bottom-right their shifted version with respect to the
estimated LATs.

clinically recorded electrograms and discussed the distinct
differences in the results. This showed potential advantages
of cross-correlation over higher order neighbors when deter-
mining the delay between local activation times.
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