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Abstract—This paper introduces Taco-VC, a novel architecture
for voice conversion based on Tacotron synthesizer, which is
a sequence-to-sequence with attention model. The training of
multi-speaker voice conversion systems requires a large num-
ber of resources, both in training and corpus size. Taco-VC
is implemented using a single speaker Tacotron synthesizer
based on Phonetic PosteriorGrams (PPGs) and a single speaker
WaveNet vocoder conditioned on mel spectrograms. To enhance
the converted speech quality, and to overcome over-smoothing,
the outputs of Tacotron are passed through a novel speech-
enhancement network, which is composed of a combination of
the phoneme recognition and Tacotron networks. Our system
is trained just with a single speaker corpus and adapts to new
speakers using only a few minutes of training data. Using mid-size
public datasets, our method outperforms the baseline in the VCC
2018 SPOKE non-parallel voice conversion task and achieves
competitive results compared to multi-speaker networks trained
on large private datasets.

Index Terms—Voice Conversion, Speech Recognition, Speech
Synthesis, Adaptation

I. INTRODUCTION

The purpose of voice conversion (VC) is to convert the
speech of a source speaker into a given desired target speaker.
A successful conversion preserves the linguistic and phonetic
characteristics of the source utterance while keeping natural-
ness and similarity to the target speaker. VC can be applied to
various applications, such as personalized generated voice in
text-to-speech (TTS) [1], speaking aid for people with vocal
impairments [2] and speaker verification spoofing [3].

A wide range of approaches exists for the VC task. Some use
a statistical parametric model such as Gaussian mixture models
(GMM) to capture the acoustic features of the source speaker
and create a conversion function that maps to the target speaker
[4], [5]. Recently, several deep learning based solutions have
been provided and successfully led to a better spectral conver-
sion compared to the traditional GMM-based methods. Various
network architectures are employed such as feed-forward deep
neural networks [6], [7] recurrent neural networks (RNN) [8],
[9], generative adversarial networks (GAN) [10], [11], and
variational autoencoder (VAE) [12], [13].

The converted speech of a VC system is measured by
three main quality parameters: (1) Prosody preservation of the
source speech, (2) naturalness, and (3) target similarity. Recent
research demonstrates successful prosody preservation when

Fig. 1. Taco-VC Conversion Process.

using VC based phonetic PosteriorGrams (PPGs) [14]. PPGs
represent the posterior probability of each phonetic class per
single frame of speech. The PPGs are obtained from speaker-
independent automatic speech recognition (SI-ASR) network,
therefore considered as SI features [15]. The quality of the
converted speech is profoundly affected by the vocoder used in
the speech synthesis system. Recently, WaveNet vocoder [16]
became highly popular and is broadly used in VC, providing
high quality converted waveforms [17], [18].

TTS research has gained significant progress over the last
years, mainly due to the adaptation of sequence-to-sequence
(Seq2Seq) models such as Tacotron [19], [20]. Seq2Seq meth-
ods are also used for VC, among them, the multi-speaker
SCENET model [21] contains an encoder-decoder with atten-
tion, which predicts target MSPECs from source MSPECs and
bottleneck features. The Parrotron [22] and the work from [23]
also describe the usage of Tacotron for VC purposes, however,
they do not use prosody preserved features and require text or
phonemes during training.

In this work, we propose Taco-VC, a four stages architec-
ture for high quality, non-parallel, many-to-one VC. Its main
advantage is that it requires a corpus of only a single speaker
for training, and can easily be adapted to other speakers with
limited training data. Inspired by the recent success of TTS
models, we base our VC system on the architecture of Tacotron
[19], which provides high quality and natural speech using
a Seq2Seq synthesizer with attention mechanism [24], and
WavenNet vocoder. As can be seen in Fig. 1, Phonetic Poste-
riorGrams (PPG) are extracted from a phoneme recognition
(PR) model to preserve the prosody of the source speech.
Using a single speaker Tacotron synthesizer, we synthesize
the target mel-spectrograms (MSPEC) directly from the PPGs.
The synthesized MSPECs (SMSPEC) pass through a speech
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enhancement network (Taco-SE), which outputs the speech
enhanced SMSPECs (SE-SMSPEC). Finally, a single speaker
WaveNet vocoder generates the predicted audio from the
SE-SMPSECs. We use the same acoustic features (80-band
MSPECs) in our different networks as it leads to a high-quality
conversion in terms of similarity to the target speaker [25]. It
also allows to train the different networks independently and
combine them to generate the final target audio.

The main contributions of this work are: (1) a scheme that
relies on a single-speaker Tacotron and WaveNet, and adapts
successfully to other target speakers with limited training data;
(2) a novel approach for speech enhancement, which handles
over-smoothing and noise using a joint training of the PR
and Tacotron synthesizer without over-parameterization of the
model due to weight sharing; (3) a VC architecture that uses
only public and mid-size data, and outperforms the existing
baselines. It also shows competitive results compared to other
multi-speaker VC networks trained on private and much larger
datasets. To the best of our knowledge, Taco-VC is the first VC
system that presents a successful adaptation of single speaker
networks to other speakers with limited data.

The paper is organized as follows: Section II describes Taco-
VC model and its adaptation process to new speakers. Section
III reports the experiments and results, showing the advantages
of the proposed approach. Section IV concludes the paper.

II. THE VOICE CONVERSION NETWORK

Fig. 2 presents the four components of our VC system. We
provide next details on each of them.

A. The Phoneme Recognition Network

We use Phonetic PosteriorGrams as our prosodic preserving
features. The PPGs are extracted using a PR network. This
network architecture choice is made with two main goals: (1)
Provide the ability to extract PPGs at the frame level; (2)
Allow joint training with the speech synthesis network. We
use a convolutional neural network (CNN) based PR, which is
easy to train as it suffers less from vanishing gradients issues
[26] during training compared to RNN and it can be integrated
with Tacotron synthesizer as part of the encoder. The PPGs
are taken from the last fully connected layer before the CTC
loss [27], which is employed in our network training.

Fig. 2(1) shows the Seq2Seq training process of the PR
network with the MSPECs as the inputs and the phoneme
labels as the targets. This network has the same structure of
[28] except of the following changes: (1) We use the Leaky-
ReLU non-linearity [29] instead of Maxout to reduce the num-
ber of parameters; (2) We add batch-normalization [30] after
each non-linear activation in the convolution layers to increase
network stability; (3) For compatibility with Tacotron and
WaveNet networks, the raw audio input of the PR network is
transformed into MSPECs instead of mel-cepstral coefficients.

The performance of our PR network is measured by
phoneme error rate (PER). It achieves 17.5% PER on the core
test set, which improves over the 18.2% of the network in
[28].

Fig. 2. The training of our model consists of four steps: (1) Phoneme recog-
nition training, (2) Tacotron Synthesizer training, (3) Speech enhancement
(Taco-SE) training, (4) WaveNet training.

B. The Speech Synthesis Network (Tacotron)

Inspired by the success of Tacotron in the fields of TTS,
we propose a single speaker Tacotron Seq2Seq model with
attention mechanism to predict MSPECs directly from the
PPGs extracted by the PR network for the entire target
speech corpus. While TTS systems are trained with pairs of
< Text,Audio >, for VC purposes, Tacotron is trained with
< PPG,Audio > pairs. Fig. 2(2) shows the Seq2Seq training
of Tacotron. The PPGs are the single input of the network,
while the MSPECs and linear-spectrograms are used as the
target.

Our synthesis network has the same structure and loss
function as the original Tacotron [19] except of the following
changes: (1) The Pre-net of the encoder CBHG is fed directly
with PPGs instead of text; (2) While the original Tacotron uses
teacher forcing mode in the training process, we use linearly
decayed scheduled sampling [31] with a final sampling rate of
0.33 for true samples, which helps to increase the quality of
the generated MSPECs, especially when adapting the single
speaker model to a limited-size train set; (3) As the source
utterance length is known, it can be used as the ”stop-token”
of the decoder, using the fact that the target utterance has
the same length as the source utterance. We have found that
constant stop-token helps to get more stable outputs in the
generation process.

C. The Speech Enhancement Network (Taco-SE)

The PR network and Tacotron are trained separately on
different corpora. We have found that the synthesized MSPECs
tends to be over-smoothed in the mid-high harmonics. More-
over, the over-smoothing artefacts get worse when adapting
Tacotron, which is trained on a single speaker speech corpus,
to a different speaker with a limited train set.

To address these artefacts, we add another network, Taco-
SE, which is a concatenated network comprising of the trained



PR (P (•)) connected to the trained Tacotron (T (•)), without
over-parameterization of the model due to weights sharing (see
Fig. 2(3)). After initialization, Taco-SE is trained using only
the Tacotron loss LT . As the purpose of Taco-SE is to enhance
the quality of the SMSPECs, we generate for the entire corpus,
using the first two networks, the SMSPEC of each utterance.
To train the network to increase the quality, we require it to
generate the true MSPEC, denoted as y, from the SMSPECs,
denoted as ŷ. We also require it to provide this output if y is
given as we want the Taco-SE to preserve high-quality inputs.

To summarize, Taco-SE is trained on the pairs < y, y > and
< ŷ, y >, each with probability 0.5. The first corresponds to
retaining the quality by recovering the true target signal given
as an input, and the second aims at estimating the target speech
signal from a synthesized one with the goal of improving the
quality of the network. This leads to the following loss:

LTaco−SE = LT (T (P (y)), y) + LT (T (P (ŷ)), y). (1)

As can be seen in Fig. 3, the primary enhancement of Taco-
SE is being reflected in the mid-higher harmonics (marked by
red circles), while in the lower harmonics, there are merely
no changes. The SE-SMSPEC contains much better-resolved
harmonics compare to the SMSPEC.

D. The Vocoder Network (WaveNet)

The conditional WaveNet vocoder aims at reconstructing
the target raw waveforms from MSPECs. For conditioning
the MSPECs, we add local conditioning to the gated units.
Since the MSPEC is sampled with a lower sampling frequency
compares to the raw waveform, we add learnable up-sampling
convolutional layers that map it to a new time series with the
same resolution of the raw waveform.

We use the implementation and parameters of
WaveNet from [32]. As Fig. 2(4) shows, for the
WaveNet training, we use the same single speaker speech
corpus used for both Tacotron and Taco-SE. Also, for local
conditioning of WaveNet, we use the same MSPECs features
that are used for the rest of the networks.

E. System Adaptation

Another aspect of speech synthesis systems in general and
VC systems, in particular, is the ability to adapt to new
speakers given limited training data. TTS models are usually
trained on large datasets with multiple-speaker support. There
are two main strategies for adapting to other target speakers:
(1) Using a speaker embedding in multi-speaker systems [33];
and (2) model adjustment by fine-tuning of a multi-speaker SI
model to a target speaker, which leads to better results in terms
of target similarity [34]. Such multi-speaker networks require
longer training phases, complex networks with a large number
of parameters, and much larger training sets. The usage of
model adjustment was also explored for VC systems, such as
[14], [18] that train a multi-speaker SI WaveNet vocoder and
adapt it to new target speakers.

We use the model adjustment by the fine-tuning technique
for the adaptation process, as done in [18], and explore how a

Fig. 3. Linear SE-SMSPEC and SMSPEC Comparison.

single speaker system will adapt to other speakers with limited
data. The trained Tacotron is fine-tuned on the new target’s
training data with linearly decayed scheduled sampling. Taco-
SE is fine-tuned in the same way as Tacotron and uses
SMPSECs that are generated for every utterance in the new
target training set by the fine-tuned Tacotron. WaveNet is also
fine-tuned on the new target training set. Since the PR network
is speaker independent, it does not require an adaptation.

III. EXPERIMENTS

A. Experimental Setups

The PR model is trained using the TIMIT corpus [35].
All the 462 speakers training set is used except the SA
recordings. The sampling rate of the TIMIT is 16 kHz with
a 16-bit resolution. For having alignment with the rest of the
networks, we up-sampled it to 22050 Hz. Tacotron, Taco-SE,
and WaveNet are trained using the public LJ Speech corpus
[36], which consists of 13,100 utterances from a single female
speaker. The total length of the corpus is approximately 24
hours. All of the utterances are recorded with a sampling rate
of 22050 Hz and a 16-bit resolution. The acoustic features
used for all of the systems are 80-band MSPECs extracted
using Hann windowing of 1024-samples Short Time Fourier
Transform, and 256-samples step size. The mel filter-bank base
is computed in the range of 125 to 7600 Hz.

We evaluate our system on the VCC2018 SPOKE task [37],
which is a non-parallel VC task. It has an English speech
dataset, containing two males (VCC2TM1, VCC2TM2) and
two females (VCC2TF1, VCC2TF2) target speakers and two
males (VCC2SM3, VCC2SM4) and two females (VCC2SF3,
VCC2SF4) source speakers. Each speaker has the same 81
content utterances for training, and 35 utterances for testing.
The whole training set is approximately 5 minutes of speech
per target speaker. All of the utterances are recorded with a
sampling rate of 22050 Hz and a 16-bit resolution.

Tacotron and Taco-SE are trained with a batch size of 5
and optimized using Adam optimizer with a linearly decayed
learning rate with an initial value of 0.002 for Tacotron and
0.0005 for Taco-SE. We use reduction factor r = 3 as it leads
to the best attention alignment. To adapt the different networks,



Fig. 4. Total Average Quality (Naturalness) MOS of the five evaluated
networks and target speech. The triangle value is the mean. The bold line
is the median.

we fine-tuned the trained Tacotron and Taco-SE for each of the
target speakers for another 10,000 steps, using linearly decayed
scheduled sampling as for the initial training. WaveNet is fine-
tuned with another 20,000 steps.

For subjective evaluation, we use the mean opinion score
(MOS) of naturalness and target similarity. Both evaluations
are conducted using the Amazon Mechanical Turk framework.
We compare our test utterances to the published, submitted test
utterances of the VCC2018. We also do an ablation study by
removing the Taco-SE network. The tested models are1:

• B01 - The baseline system of VCC2018 is a vocoder-free
system based on a GMM conversion model [38].

• N10 - The best system in both the similarity and natural-
ness scores of VCC2018 [18]. It uses a DBLSTM conver-
sion model that converts STRAIGHT extracted spectral
features and F0. The vocoder is a speaker-dependent
multi-speaker WaveNet. The networks are trained using
iFlytek large private datasets. As we do not have access
to this large corpus, this work has an inherit advantage.

• N17 - The second-best system in the similarity score
of VCC2018 [39]. The conversion model is DNN based
encoder-decoder trained on a parallel training set gener-
ated by TTS from the non-parallel corpus. The vocoder
is a speaker-dependent multi-speaker WaveNet.

• N13 - The second-best system in the naturalness score of
the VCC2018.

• Taco-VC - Our proposed method, including Taco-SE
network.

• Taco-VC-NoSe - Our proposed method without Taco-SE
network.

B. Naturalness Evaluation

In the naturalness evaluation, human subjects rate the qual-
ity of the different converted utterances. In each assignment,

1Audio samples - https://roee058.github.io/Taco-VC/

Fig. 5. MOS of target similarity of the evaluated five networks and target
speech.

subjects rate six different utterances with the same content
speech - N10, N13, B01, Taco-VC, Taco-VC-NoSe, and the
original target. The quality rate is on a scale of 1 (Bad -
Completely unnatural speech) to 5 (Excellent - Completely
natural speech). The number of evaluation utterances is ten
conversions per source with a total of 40 per target, and a
total of 160 utterances per system. Every utterance gets ten
votes. The utterances are presented in random order. Total of
128 different evaluators participated in the experiment with an
average of 74 utterances ranks.

Fig. 4 shows the average MOS for naturalness averaged on
all pairs. The results indicate a significant effect of the Taco-SE
on the quality scores. The quality MOS results indicate that in
terms of subjective quality evaluation, Taco-VC outperforms
the baseline and gets the same median as N10, though using
only a single speaker baseline. The quality gap between Taco-
VC and N10 can also be explained by the relatively high PER
of the PR network.

C. Target Similarity Evaluation

In the target similarity evaluation, subjects rate the similarity
of the different converted utterances to the target speaker
utterances. The reference target utterance is chosen by random
selection from the training set. In each assignment, subjects
rate six different test utterances with the same content speech
- N10, N17, B01, Taco-VC, Taco-VC-NoSe, and the original
target. The similarity rate is on a scale of 1 (Different -
absolutely sure), to 4 (Same - absolutely sure). We use the
same utterances as in the naturalness evaluation. Total of 165
different evaluators participated in the experiment with an
average of 57 utterances ranks.

Figure 5 shows the MOS distribution for target similarity
averaged on all pairs. For Taco-VC, almost 60% are ranked
as similar to the target, while the baseline (B01) has less than
30%. The real target utterances get the rank of 75%. Note
that the impact of Taco-SE on the similarity score is minor
compared to the naturalness case.



IV. CONCLUSION

This work presents Taco-VC, a VC system comprised of PR
network, Tacotron synthesizer, and WaveNet vocoder. It has
the advantage that it can produce a high-quality speech con-
version by just being trained on a single speaker large corpus
and then be adapted to new speakers only using a small amount
of data. We also introduce the speech enhancement network
Taco-SE, which might be of interest by itself, and describe
how to enhance the synthesized mel-spectrograms only using
the trained networks. We show in the MOS experiments that
our architecture, using public, single speaker training set, can
adapt to other targets with limited training sets, and provide
competitive results compared to multi-speaker VC systems
trained on private and much larger datasets. We believe that
the high error rate of the PR network has a significant impact
on the converted speech. As future work, we suggest adding
more acoustic features to the generated PPGs, or extract
PPGs from other speech recognition networks with lower error
rates. Another possible future research direction is applying
the Taco-SE architecture (with a corresponding WaveNet for
denoising [40]) to speech denoising tasks.
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