
BP-DIP: A Backprojection based Deep Image Prior
Jenny Zukerman

Department of Biomedical Engineering
Tel Aviv University

Tel Aviv, Israel
jennyz@mail.tau.ac.il

Tom Tirer
School of Electrical Engineering

Tel Aviv University
Tel Aviv, Israel

tomtirer@mail.tau.ac.il

Raja Giryes
School of Electrical Engineering

Tel Aviv University
Tel Aviv, Israel

raja@tauex.tau.ac.il

Abstract—Deep neural networks are a very powerful tool
for many computer vision tasks, including image restoration,
exhibiting state-of-the-art results. However, the performance of
deep learning methods tends to drop once the observation
model used in training mismatches the one in test time. In
addition, most deep learning methods require vast amounts of
training data, which are not accessible in many applications. To
mitigate these disadvantages, we propose to combine two image
restoration approaches: (i) Deep Image Prior (DIP), which trains
a convolutional neural network (CNN) from scratch in test time
using the given degraded image. It does not require any training
data and builds on the implicit prior imposed by the CNN
architecture; and (ii) a backprojection (BP) fidelity term, which
is an alternative to the standard least squares loss that is usually
used in previous DIP works. We demonstrate the performance
of the proposed method, termed BP-DIP, on the deblurring task
and show its advantages over the plain DIP, with both higher
PSNR values and better inference run-time.

Index Terms—Deep learning, loss functions, image deblurring

I. INTRODUCTION

Image restoration refers to the recovery of an original
unknown image from its degraded version, which suffers from
defects, such as blur, noise and low resolution. In a linear
image restoration problem, the goal is to recover the original
image x∗ ∈ Rn from the degraded measurements

y = Ax∗ + e, (1)

where e ∈ Rm is an additive noise and A ∈ Rm×n is a
degradation operator. For example, in image deblurring m = n
and A is a square ill-conditioned matrix which represents a
blur operator that filters the image by a blur kernel.

Image restoration tasks often involve minimization of a cost
function, composed of a fidelity term and a prior term

min
x
`(x, y) + βs(x), (2)

where ` is the fidelity term, s is the prior term and β is a
positive parameter that controls the level of regularization.
The fidelity term forces the output image to comply with
the observation model, while the prior poses an underlying
assumption about the latent image, e.g. that natural images
are sharp and free of noise and holes.

Since inverse problems represented by (1) are usually ill-
posed, a vast amount of research has been focused on the prior
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term s(x). Various natural image priors have been researched.
Some of them can be described by explicit and interpretable
functions, e.g. total-variation (TV) [1], and others, such as
BM3D [2] and (pre-trained) deep generative models [3], are
more implicit (i.e. cannot be associated with explicit prior
functions). Many image priors (of both kinds) also exploit the
non-local similarity of natural images [4], [5].

The fidelity term, however, has been less researched and
is often chosen as the typical least squares (LS) objective.
Recently, the authors of [6] have presented the backprojection
(BP) fidelity term, which shows an advantage over the standard
LS term on different image restoration tasks, such as deblur-
ring and super-resolution, using priors such as TV, BM3D,
and convolutional neural network (CNN) denoisers [7], [8].
In [6], the BP fidelity term is also mathematically analyzed
and compared to LS for the case where s(x) is the Tikhonov
regularization (i.e. the `2 prior).

Nowadays, CNNs are a very powerful tool for many com-
puter vision tasks, including image restoration. For a given
reconstruction task, CNNs can perform the inverse mapping
from the observations to the signal domain and achieve state-
of-the-art performances due to their ability to learn from large
datasets. Researchers, motivated by deep learning great results,
are applying deep neural networks to solve imaging inverse
problems such as denoising [9]–[12], super-resolution [13]–
[15] and deblurring [16]–[18].

However, the performance of deep learning methods tends
to significantly drop once the observation model used in
training mismatches the one in test time. This is the reason
for the growing popularity of alternative methods, which are
not biased to the observation model used in the offline training
phase. One such example is the plug-and-play (P&P) denoisers
approach [19] and its successors, which have been proposed
in the last few years. In the original P&P paper [19], the
authors minimize (2) using an optimization algorithm that
decouples the fidelity term and the prior term. They propose
to avoid explicit formulation of s(x), and instead, handle the
prior by an arbitrary denoising operation (e.g. BM3D or CNN
denoisers). A related work is IDBP [7], which presents an
alternative framework for solving inverse problems using off-
the-shelf denoisers. This method requires less parameter tuning
and implicitly uses the unique BP fidelity term [6]. Another
recent variant of [19] modifies the way that the denoising
engine is used to regularize the inverse problem [20], [21].
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An additional disadvantage of deep learning originates from
its requirement to often use a lot of data. Indeed, large datasets
are used in the majority of works in this field. However,
recently several deep learning methods, which are trained
only using a single image, have been proposed and have
demonstrated surprisingly good results. In Deep Image Prior
(DIP) [22] the authors use the deep CNN itself as a prior
for various restoration tasks, e.g. denoising, super-resolution
and inpainting. As part of this approach, a CNN is trained
from scratch during test time, using only the degraded image,
with no requirement for a training dataset. Another work
that trains a CNN super-resolver from scratch at test time is
ZSSR [23], which presents a combination of deep architectures
with internal-example learning. Besides the test image, no
other images are used—all the pairs of training patches are
extracted/synthesized from the test image. In SinGAN [24],
a generative model is learned from a single image. The
SinGAN contains a pyramid of fully convolutional generative
adversarial networks (GANs) [25], where each of them learns
the patch distribution at different scales of the image. Both
ZSSR and SinGAN focus on a specific task (super-resolution
and samples generation, respectively), in contrast to the DIP
approach. There are also works that incorporate training on
external data with image-adaptation (via fine-tuning using the
test image), such as IDBP-CNN-IA [8] and IAGAN [26].

In this paper, we focus on the DIP strategy. Most of the
papers that apply this approach use the typical LS loss function
and achieve rather limited performance and/or require a very
large number of backprop iterations at test time [22], [27],
[28]. To mitigate these deficients, we propose to use a BP loss
function instead of the LS loss. We demonstrate this approach
for deblurring, using multiple kernels and noise levels, and
present improved restoration results, which are reflected by
higher PSNR and SSIM values and much better inference run-
time.

II. BACKGROUND

Before we turn to describe our method, we first describe in
more details the DIP and BP strategies.

A. Deep Image Prior (DIP)

In recent years, training deep convolution neural networks
have become a common way to perform image restoration
tasks. The popularity of this machine learning approach stems
from the difficulty in accurately modelling natural images with
explicit prior functions. Typically, the implicit prior that is
associated with a CNN is achieved by supervised learning
using a large dataset, where the degraded images serve as the
networks inputs and the weights are optimized such that the
networks outputs match the original images.

The Deep Image Prior (DIP) work [22] has demonstrated a
remarkable phenomenon: CNNs can be used for solving image
restoration problems without any offline training and external
data. The DIP paper disputes the idea that supervised learning
is mandatory for restoring images with CNNs. It shows that the
network’s architecture itself is sufficient for forcing a strong

prior that allows reconstructing an image from its degraded
version. Therefore, there is no need in large datasets and offline
learning, as the image restoration can be performed only by
using the single degraded image.

In DIP, the estimated image x ∈ R3×H×W is parameterized
by

x = fθ(z), (3)

where fθ(z) is (typically) a deep CNN with U-Net architecture
[29], z ∈ RC′×H′×W ′

is a fixed tensor filled with uniform
noise, and θ are the network parameters. Currently, DIP works
consider a loss function that is given by the LS objective

min
θ
‖y −Afθ(z)‖22 , (4)

and minimize it, with respect to θ, using first-order methods
such as SGD and Adam [30]. Note that overfitting y may
lead to fθ(z) with artifacts. Therefore, in DIP the optimization
process is terminated early.

It is interesting to note that the above strategy can be
obtained from the general formulation in (2), for the LS fidelity
term

`(x, y) =
1

2
‖y −Ax‖22 , (5)

and the following indicator prior

s(x) =

{
0, x = fθ(z)

+∞, otherwise
. (6)

B. The backprojection (BP) fidelity term

Recently, the backprojection (BP) fidelity term has been
proposed in [6] as an alternative to the widely used LS
term (5). Under the practical assumptions that m ≤ n
and rank(A) = m, the pseudoinverse of A is given by
A† = AT (AAT )−1, and the backprojection fidelity term is

`(x, y) =
1

2

∥∥A†(y −Ax)∥∥2
2
. (7)

This fidelity term encourages agreement between the projec-
tion of the optimization variable onto the row space of the
linear operator (i.e. A†Ax) and the pseudoinverse of the linear
operator (back-projection) applied on the observations (i.e.
A†y). Note that (7) can also be written as1

`(x, y) =
1

2

∥∥∥(AAT )− 1
2 (y −Ax)

∥∥∥2
2
. (8)

It has been demonstrated in [6]–[8] that for different priors
(e.g. TV, BM3D, and pre-trained CNNs) the BP fidelity term
can yield better recoveries than LS for badly conditioned A
and requires fewer iterations of optimization algorithms (the
improved convergence rate is also analyzed in [31]). Yet, when
the singular values of A are small, the performance advantage
of BP is inversely proportional to the noise level.

1The equivalence between (7) and (8) can be observed by expanding the
two quadratic forms.



(a) Uniform kernel, σ =
√
0.3 (b) Uniform kernel, σ =

√
2 (c) Uniform kernel, σ =

√
4

(d) Radial kernel, σ =
√
0.3 (e) Radial kernel, σ =

√
2 (f) Radial kernel, σ =

√
4

(g) Gaussian kernel, σ =
√
0.3 (h) Gaussian kernel, σ =

√
2 (i) Gaussian kernel, σ =

√
4

Fig. 1: Deblurring results (averaged over Set14) for: Uniform kernel in (a)-(c), Radial kernel in (d)-(f) and Gaussian kernel in
(g)-(i), for noise levels σ =

√
0.3,
√
2 and

√
4. Note that BP achieves best PSNR in all kernels with σ =

√
0.3, and BP-TV

achieves best PSNR in all kernels with higher noise levels (σ =
√
2,
√
4).

III. BACK-PROJECTION BASED DEEP IMAGE PRIOR

In this paper, we demonstrate that using the BP fidelity term
improves the performance of standard DIP, which uses the LS
fidelity term as the loss function. The use of BP fidelity term
(8) in DIP leads to the following cost function

min
θ

∥∥∥(AAT )− 1
2 (y −Afθ(z))

∥∥∥2
2
. (9)

For the image deblurring task, A represents convolution
with a blur kernel h. Therefore, in this case, AAT represents
convolution with the filter h ∗ flip(h). This operator, as well
as its square root inverse (AAT )−

1
2 , has a very fast imple-

mentation using the Fast Fourier Transform (FFT) [32]. To
conclude, the loss function (9) can be efficiently implemented
by2

min
θ

∥∥∥∥∥F∗( 1√
|F(h)|2 + ε1σ2 + ε2

F(y − h ∗ fθ))

∥∥∥∥∥
2

2

, (10)

2Note that this formulation also allows to easily obtain the loss gradients
using popular software packages, such as TensorFlow and PyTorch.

where h is a blur kernel, σ is the noise level in (1), and F ,
F∗ stand for Fourier transform and inverse Fourier transform,
respectively. ε1 and ε2 are regularization parameters, which
are required since A is ill-conditioned in case of deblurring,
and the scenarios include noise. Note that FFT implementation
of the operator AAT and its inverse can be done in more
restoration tasks, such as in super-resolution (e.g. see [33]).

As explained in [6], in scenarios such as deblurring, where
A has many singular values that are much smaller than 1,
the BP term is more sensitive to noise than the LS term.
Therefore, the inversion of AAT has to be regularized. The
higher the noise level in y is, the more sensitive the expression

1√
|F(h)|2+ε1σ2+ε2

F(y) in (10).

In order to mitigate the sensitivity to noise of BP for DIP
(which seems somewhat increased compared to other priors
[6]–[8]), we propose to add TV regularization [1] to the loss
function (10). The TV term encourages piecewise smoothness
in the image and has led to a more balanced restoration in our
experiments. The (anisotropic) TV loss, used in this work, is



(a) Ground truth (b) Blurred image (c) LS (d) LS-TV (e) BP (f) BP-TV

Fig. 2: Deblurring using BP-DIP and LS-DIP (with and without TV). Uniform kernel, σ =
√
0.3

(a) Ground truth (b) Blurred image (c) LS (d) LS-TV (e) BP (f) BP-TV

Fig. 3: Deblurring using BP-DIP and LS-DIP (with and without TV). Radial kernel, σ =
√
2

(a) Ground truth (b) Blurred image (c) LS (d) LS-TV (e) BP (f) BP-TV

Fig. 4: Deblurring using BP-DIP and LS-DIP (with and without TV). Gaussian kernel, σ =
√
2

(a) Ground truth (b) Blurred image (c) LS (d) LS-TV (e) BP (f) BP-TV

Fig. 5: Deblurring using BP-DIP and LS-DIP (with and without TV). Gaussian kernel, σ =
√
4

given by ∑
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j | (11)

for a two-dimensional signal x.

IV. EXPERIMENTS

We demonstrate our approach on the deblurring task, which
aims at recovering the original, sharp image from a blurred
image. The performance of the deblurring process is compared
between two cases: DIP with backprojection loss and DIP
with least squares loss, denoted by BP-DIP and LS-DIP,

respectively. We use 3 different blur kernels; radial, Gaussian
and uniform, with 3 different noise levels:

√
0.3,
√
2 and

√
4.

The radial kernel is of size 15 15 and can be written as
1

1+x2
1+x

2
2
, x1, x2 = −7, ..., 7, the Gaussian kernel is of size 15

15 with STD 1.6, and the uniform kernel is of size 9 x 9. All
three kernels are normalized to the sum of 1.

The hyper-parameters and CNN are chosen to be the same
as in the original DIP paper [22], such that all of the ex-
periments are performed using a U-Net architecture [29] with
skip-connections where the input and the output have the same
spatial size, the optimiser is Adam [30] and the learning rate



TABLE I: Deblurring results (PSNR [dB] / SSIM averaged over Set14) of the different methods

Uniform kernel Radial kernel Gaussian kernel
σ =

√
0.3 σ =

√
2 σ =

√
4 σ =

√
0.3 σ =

√
2 σ =

√
4 σ =

√
0.3 σ =

√
2 σ =

√
4

LS 26.31 / 0.83 26.84 / 0.84 26.45 / 0.83 28.09 / 0.88 28.10 / 0.88 28.49 / 0.87 27.42 / 0.87 27.22 / 0.86 27.66 / 0.86
LS-TV 26.36 / 0.83 26.95 / 0.84 26.80 / 0.84 28.41 / 0.88 28.44 / 0.88 28.30 / 0.88 27.74 / 0.86 27.31 / 0.85 27.62 / 0.86

BP 29.78 / 0.91 26.57 / 0.84 25.41 / 0.80 32.50 / 0.95 28.80 / 0.89 27.44 / 0.86 29.73 / 0.91 27.13 / 0.85 26.05 / 0.82
BP-TV 29.51 / 0.90 28.25 / 0.88 27.31 / 0.86 31.75 / 0.93 30.10 / 0.91 28.94 / 0.89 29.65 / 0.91 28.94 / 0.90 28.24 / 0.88

is 0.01. The deblurring performance is evaluated on Set14
dataset.

The weight of the TV regularizer was chosen as the best
value for BP and LS separately: 1e − 3 for BP (all kernels),
1e − 5 and 1e − 6 for LS with Gaussian/radial kernels and
uniform kernel, respectively. The ε1 and ε2 values in equation
(10) were chosen as 0.01 and 1e− 3 respectively.

Curves of PNSR vs. iteration number for all 9 experiments
are displayed in Figure 1, and the final PNSR/SSIM are also
displayed in Table I. Several visual examples are presented
in Figures 2-5. It is apparent that: (a) with BP loss, DIP
yields higher PSNR than with LS loss; (b) BP-DIP reaches
its peak PSNR faster than LS-DIP; (c) In most cases, adding
the TV term improves the PSNR for both LS and BP, however,
the bigger improvement is seen with BP-DIP; (d) As in the
original DIP paper, early stopping is needed, otherwise the
images are corrupted with noise.

Notice that when σ =
√
0.3, BP presents the best PSNR

out of the 4 methods (BP, BP-TV, LS, LS-TV) and there is,
in fact, no need in adding the TV term. However, when σ is
higher, BP-TV presents the best PSNR out of the 4 methods. In
general, when the noise level rises, the gap between BP and
LS results reduces and adding TV to the loss term usually
boosts the results. Also notice that the PSNR of LS-DIP starts
descending at some iteration, similarly to the PSNR of BP-
DIP (i.e. both of them require early stopping). However, for
LS-DIP it happens at a much later iteration. This behavior
shows than when the number of iterations is tuned for best
performance, BP-DIP (even with TV) is faster than the LS-
DIP.

V. CONCLUSION

In this work, we examined the influence of the backpro-
jection (BP) fidelity term on Deep Image Prior (DIP). We
conducted multiple deblurring experiments, using various blur
kernels and noise levels and achieved significant improvement
over the DIP work, both in PSNR and in the required number
of optimization iterations (and thus in the inference run-
time). Our approach presents another empirical evidence that
untrained CNNs can reconstruct a clean and sharp image using
only its degraded version. Yet, it demonstrates that very good
results can be obtained even after a relatively small number of
iterations. Future work includes examining the same concept
with other restoration tasks, e.g. super-resolution.
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