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Juan Sebastián Gómez Cañón∗, Estefanı́a Cano†, Perfecto Herrera∗, Emilia Gómez∗‡
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Abstract—In this study, we address emotion recognition using
unsupervised feature learning from speech data, and test its
transferability to music. Our approach is to pre-train models
using speech in English and Mandarin, and then fine-tune them
with excerpts of music labeled with categories of emotion. Our
initial hypothesis is that features automatically learned from
speech should be transferable to music. Namely, we expect the
intra-linguistic setting (e.g., pre-training on speech in English
and fine-tuning on music in English) should result in improved
performance over the cross-linguistic setting (e.g., pre-training
on speech in English and fine-tuning on music in Mandarin).
Our results confirm previous research on cross-domain transfer-
ability, and encourage research towards language-sensitive Music
Emotion Recognition (MER) models.

Index Terms—Sparse convolutional autoencoder, speech emo-
tion recognition, music emotion recognition, unsupervised learn-
ing, transfer learning, multi-task learning.

I. INTRODUCTION

There is a strong relationship between the recognition of
perceived emotions in both speech and music: shared tax-
onomies of emotion [1], [2], shared biological and evolu-
tionary processes in the brain [3], [4], similar acoustic cues
that are related in both domains [5], [6], and models that
attempt to recognize perceived emotions across domains [7],
[8]. Researchers have evaluated how individual differences
influence emotions perceived in music and speech prosody by
English speakers [9]. They found that the ratings on speech
are unaffected by factors such as personality, musical training,
emotional intelligence and gender, but may be influenced by
age. On the other hand, ratings on music are unaffected by
gender and emotional intelligence, and minimally influenced
by personality, musical expertise and age. These findings
are congruent with previous hypotheses of shared affective
processing of stimuli in the brain for both domains [3], but
also suggest that individual differences may be more important
in the domain of music than for speech. Research in music
psychology has pointed out that emotion perception is also
influenced by additional factors such as empathy, cultural
background, generation, sex, and personality [10].

To deal with the inherent subjectivity in music emotions,
a reasonable approach in the literature has been to build
MER models tailored to different users (personalized MER)
and user groups (groupwise MER). Personalized MER refers

to using annotations from a specific user, and training a
personalized model. Groupwise MER gathers users according
to individual factors (e.g., demographics, musical expertise,
and personality), and averages the annotated data as common
”ground truth” [11]. Studies have shown that personalized
models result in heavy cognitive burden to the users during
the annotation process, and that groupwise models have not
significantly outperformed general models in terms of accu-
racy [12]. The scope of our work is to study the effect on
classification accuracy of groupwise language-sensitive MER
models. We address two research questions in this paper: (1)
Can inductive transfer, as used in the field of deep learning,
be used to create music emotion recognition models that are
sensitive to language? (2) Should language be considered as a
personal difference to be used when designing and improving
the performance of MER models?

The rest of the paper is structured as follows: in Section
II we discuss related work. In Section III we detail the
methodology of our study, including the selected data sets and
network architectures. Section IV describes our results, which
are later discussed in Section V.

II. RELATED WORK

The majority of work regarding speech emotion recognition
(SER) and music emotion recognition (MER) has focused
on the extraction of emotionally-relevant features, and the
implementation of classification or regression models that
predict emotion categories or arousal-valence (AV), respec-
tively1. However, very few studies are directed to cross-domain
research, even though there is ample evidence of shared cog-
nitive processes in the humans’ parsing of speech and music
[16]. Researchers have analyzed audio to find correlations in
emotion-related features across speech, music and sound [6].
The authors obtained a set of low-level acoustic descriptors for
the recognition of AV across the three domains, and proposed a
cross-domain correlation coefficient as a method for selection
of features that generalize for cross-domain AV prediction.
This resulted in the InterSPEECH2013 Computational Paralin-
guistic Challenge (IS13 ComParE) feature set of cross-domain
emotionally-relevant descriptors.

1For a detailed review on SER refer to [13], [14] and on MER refer to
[11], [15].



Other studies have also compared perceived emotions by
music and speech prosody using time-continuous evaluations.
In [7] for example, the authors attempted to produce a model
of psychoacoustic cues of emotion communication common to
both domains. More recently, these authors have also explored
shared acoustic codes between speech and music using deep
learning [8]. They predicted perceived emotion in music using
models trained on emotional speech and vice-versa by using
transfer learning techniques [8]. In this case, the authors pre-
trained a denoising autoencoder (DAE) using IS13 features
from speech in British English, and performed transfer learn-
ing to predict time-continuous AV in instrumental classical
music. Their results show that transferring from speech to
music was more successful than in the opposite direction.

Other works have explored cross-cultural and cross-data
set MER [17], [18]. Authors used acoustic features related
to loudness, pitch, rhythm, timbre, and harmony, which have
been thoroughly studied for Western music [5], [19]. Their
study tested the generalization of models trained with these
features on non-Western music. Researchers applied their
models on three data sets developed for emotion prediction,
and selected subsets in order to homogenize inter-rater agree-
ment (as defined by Krippendorff’s α)2. Finally, they trained
support vector regressors, and evaluated their performance
across the different data sets. Their results suggest that the
most important factor for cross-data set generalizability is
inter-rater agreement and that it is largely supported, mainly
for the arousal dimension.

The goal of our work is to build upon the work of [7], [8] to
develop emotion classifiers, and use language both as a source
of data (in the case of speech) and as a personal difference
(in the case of lyrics of music). We aim to develop language-
sensitive MER models, that are customized to different user
groups and evaluate systematically different architectures. To
achieve this, the following steps were conducted: (1) We
collected users ratings to understand music emotion perception
and agreement among people with different mother tongues,
(2) We implemented a benchmark model based on [8] for
music emotion classification, and (3) We proposed and ex-
tended a model with language-sensitive characteristics using
a multi-task learning approach [21]. Our contribution is to
take language of speech and music into account to develop
our models, while [7], [8] use speech in English and French
indistinctly since IS13 features do not focus on linguistic
aspects of speech. Additionally, we use transfer learning to
exploit speech data and improve performance, differing from
[17], [18].

III. METHODOLOGY

A. Agreement analysis

To better understand the influence of language in emotion
perception, we conducted online surveys in four languages

2Agreement is the proportion of the observed to the expected above-chance
agreement amongst different raters [20].

TABLE I
SUMMARY OF SPEECH AND MUSIC DATA SETS: AV REFERS TO

AROUSAL-VALENCE AND SIZE IN (N H) IS THE AMOUNT OF DATA USED
FOR TRAINING.

LibriSp. Aish. 4Q-Emo. CH-818

Type Speech Speech Music Music
Language Eng. Man. Eng./Spa. Man.
Annotation - - Quadrant AV Numeric AV
Size 100h

(7.5h)
178h
(3h)

900 clips
(7.5h)

356 clips
(2.96h)

(English, Spanish, German and Mandarin) to test for differ-
ences and similarities of the emotions perceived in music
by listeners with different native languages (see [22] for
details). We analyzed emotion annotations using inter-rater
reliability statistics of musical fragments from different styles
(mainly pop and rock in English) that belong to the 4Q-
Emotion data set (see Section III-B2). We used 22 musical
fragments related to 11 categories of emotion by querying
the emotion from the metadata, and asked participants to rate
them on a 5-point Likert response format. Additionally, we
gathered information on the participants’ music sophistication,
preference, familiarity, and lyrics comprehension (LC) for each
fragment. We had unbalanced participation for the surveys:
English (n = 26), Spanish (n = 56), German (n = 17), and
Mandarin (n = 27). Hence, we initially analyzed the resulting
23562 ratings from all participants (n = 126).

B. Data sets

To train the models in this work, different speech and music
data sets, both in English and in Mandarin, were used.

1) Speech Data: To train models on English speech, the
Librispeech data set was used in this work [23]. Librispeech is
a speech recognition data set containing more than 1000 hours
of speech from public domain audio books belonging to the
LibriVox project. To train the models with Mandarin speech,
the AISHELL data set was used [24]. AISHELL was collected
from 400 participants from different regions in China who
read 500 sentences covering different domains: smart homes,
autonomous driving, entertainment, science, and news. To train
our models, we randomly selected a subset from each data
set: 85% of the data was used to train, and 15% was used for
validation during pre-training (see Table I).

2) Music Data: Labeled music data was used to train our
MER models. To train our English models, the 4Q-emotion
data set was used [25]. It contains mainly popularly consumed
music, including pop, rock, and metal. The metadata was
collected from the AllMusic API by selecting tags, intersecting
them with emotional adjectives, and then mapping annotations
to the four quadrants of AV space [1]. Q1 corresponds to posi-
tive arousal-positive valence (e.g., happiness), Q2 corresponds
to positive arousal-negative valence (e.g., anger), Q3 corre-
sponds to negative arousal-negative valence (e.g., sadness),
and Q4 corresponds to negative arousal-positive valence (e.g.,
tenderness). Even though the 4Q-emotion data set contains



Fig. 1. Proposed network architecture where BN is batch normalization, D represents dropout, LS is the higher-dimensionality latent space, MP is
MaxPooling2D, and US is UpSampling2D. Each double conv-layer increases number of filters linearly: 32, 64 and 128, respectively.

other languages than English, an analysis of the data set using
polyglot reveals that at least 80% of the data is sung in En-
glish.To train our Mandarin models, the CH-818 data set was
used [18]. It contains Chinese pop songs released in Taiwan,
Hong Kong and Mainland China. Each clip was annotated by
three musical experts from China with an interface consisting
of two sliding bars of continuous real values between [-
10,10] for AV space. To make the English and Mandarin
music data sets comparable, numeric AV annotations in CH-
818 were mapped to their corresponding quadrants. Both data
sets were split considering the number of classes into the
following: 70% for training (85% training, 15% validation),
and 30% for testing (see Table I). It is important to note that
the 4Q-Emotion and LibriSpeech data sets contain non-tonal
languages (mainly English), while AISHELL and CH-818
contain tonal languages (only Mandarin). This distinction is
important since tonal languages can convey different semantic
meaning through speech prosody (i.e., different intonations
of the same words can have different meanings). Given the
scarcity of music emotion data sets, we balance equal amount
of speech and music data (in hours) for each language,
respectively (see Table I).

C. Models

Firstly, we reproduced the model presented in [8]: a de-
noising autoencoder (DAE) with Long Short-Term Memory
(LSTM) latent space that inputs feature vectors injected with
Gaussian noise. We extracted 260 emotionally-relevant fea-
tures at a rate of 1 Hz, following [6], [8]. After pre-training,
weights were kept fixed, and a new LSTM block with an
output layer using sigmoid activations was added for transfer
learning. We obtained comparable results for regression to the
ones presented by the authors only on the transfer from speech
to music. In order to implement classifiers, we substituted
the sigmoid with softmax activations at the output layer and
processed different time frames: (1) processing 5s per batch
(hidden layer of 100 neurons - DAE - Classifier in Table II),
and (2) using an over-complete latent space and processing
10s per batch (hidden layer of 800 neurons - DAE - Sparsity).
DAEs have been found to improve their denoising performance

with sparsity: a latent space with higher dimensionality than
the input space [26].

Secondly, we designed a sparse convolutional autoencoder
(SCAE) with rectified linear unit activations (ReLU), as seen
in Figure 1. All data sets were processed with the librosa
package to extract mel-spectrograms. The audio was converted
to mono and downsampled to 16kHz. A Short-Time Fourier
Transform (STFT) with a window size of 1024 (∼46ms)
and 512 hop size (∼23ms) was used. The resulting mel-
spectrograms had a dimensionality of 128 mel-bands by 31
time frames per second, extracted with an overlap of 50%. The
dimensionality of an input mel-spectrogram feature (1 x 128 x
31) is increased to (128 x 2 x 31) in the latent space, by three
double conv-layers augmenting the number of filters in the
encoder: 32, 64, and 128, respectively. Dropout is set to 0.25
after every double conv-layer to prevent overfitting. Addition-
ally, max-pooling and up-sampling are used to diminish and
augment the dimensionality of the features with a variable pool
size. Batch normalization is applied after each non-linearity
to address internal covariate shift during training. We train
each model four times and report performance using macro-
weighted averages across experiments. We use a mean square
error loss function for pre-training, learning rate of 0.001
(Adam optimization) and add random Gaussian noise (µ=0,
σ=0.3). After pre-training, transfer learning is implemented
by removing the decoder and adding a flattening layer, 3
fully connected layers each with 512 neurons, followed by
a Dropout layer each. Since we perform multi-task learning
(MTL), we add three blocks of 2 fully connected layers
(512) followed by a Dropout layer each, and three output
layers with softmax activation. We implement MTL, since
optimizing losses in the auxiliary tasks, can help improve
generalization upon a main task. Each block represents a
classifier: (1) quadrant prediction (4 classes, one per quadrant),
(2) arousal prediction (positive: Q1 and Q2, negative: Q3
and Q4), and (3) valence prediction (positive: Q1 and Q4,
negative: Q2 and Q3).We then use categorical cross-entropy
as the loss function for quadrant classification, and binary
cross-entropy for classification of positive/negative arousal and
positive/negative valence. Transfer learning is performed first
by freezing the weights from the encoder, and fine-tuning the



TABLE II
OVERALL RESULTS OF PRECISION (P), RECALL (R), AND F-SCORE (F) FOR ALL EXPERIMENTS. WE REPORT ONLY MACRO-WEIGHTED AVERAGES TO
ACCOUNT FOR CLASS IMBALANCE. INTRA-LINGUISTIC SETTINGS ARE REPORTED AS ENG2ENG (E.G., PRE-TRAIN ON LIBRISPEECH AND TRANSFER

LEARN ON 4Q-EMOTION) AND CROSS-LINGUISTIC SETTING AS MAN2ENG (E.G., PRE-TRAIN ON AISHELL AND TRANSFER ON 4Q-EMOTION).

Mandarin English
P R F P R F

Baseline CNN Quadrants 0.29 0.41 0.34 0.23 0.48 0.31

Man2Man Man2Eng Eng2Eng Eng2Man
P R F P R F P R F P R F

DAE - Classifier Quadrants 0.46 0.48 0.46 0.65 0.65 0.65 0.64 0.64 0.64 0.46 0.48 0.46
DAE - Sparsity Quadrants 0.46 0.48 0.46 0.64 0.64 0.64 0.56 0.54 0.54 0.46 0.48 0.45

SCAE - Feat. Ext.
Quadrants 0.42 0.58 0.49 0.52 0.49 0.46 0.52 0.48 0.45 0.42 0.58 0.49
Arousal 0.63 0.64 0.63 0.67 0.64 0.62 0.65 0.63 0.62 0.63 0.64 0.63
Valence 0.77 0.78 0.77 0.78 0.74 0.74 0.77 0.72 0.71 0.78 0.79 0.78

SCAE - Full
Quadrants 0.50 0.58 0.50 0.57 0.55 0.54 0.61 0.58 0.58 0.29 0.51 0.36
Arousal 0.65 0.64 0.64 0.70 0.66 0.65 0.69 0.67 0.66 0.42 0.60 0.49
Valence 0.80 0.80 0.80 0.82 0.81 0.81 0.83 0.83 0.83 0.51 0.68 0.57

network on the remaining layers at a learning rate of 0.0001
(SCAE - Feat. Ext. in Table II). On a second test, we unfreeze
the weights of the whole network and continue training with
a learning rate of 0.0005 (SCAE - Full), following [27]. We
perform Bayesian optimization to select optimal learning rates
and decays for Adam algorithm. We make the trained models
available for testing3.

IV. RESULTS AND DISCUSSION

A. Agreement Analysis

Inter-rater statistics show evidence that there are significant
differences of emotional ratings by listeners raised in differ-
ent mother tongues. In general, participants showed different
distributions of ratings in the majority of cases. Interestingly,
only the distributions of ratings of joy and peace appeared to
have similar distribution across languages. Our results have
also confirmed that basic emotions will have higher universal
agreement, while complex ones will show the opposite. We
found overall low agreement for emotions such as bitterness,
fear, power, surprise, and transcendence. Finally our findings
suggest that preference, familiarity, and lyrics comprehension
(LC) improve agreement for emotions in quadrants Q1 and
Q3, and decreases it for quadrants Q2 and Q4. Namely, it
relates to the type of emotions mapped to each of the quadrant,
and subjectivity regarding valence. This has given us new
understanding of the effect of LC and its impact on different
emotions: in the case of Q1 (positive arousal and valence) and
Q3 (negative arousal and valence) higher agreement is found,
as opposed to Q2 (positive arousal/negative valence) and Q4
(negative arousal/positive valence) where dimensions have op-
posite signs. Thus we conclude that using less categories (i.e.,
quadrants) is more consistent when attempting cross-cultural
emotion recognition, due to the difficulty of using equivalent
emotion adjectives in all languages. This further motivates the
need of attempting to create language-sensitive models, since
improved agreement in annotation could potentially lead to
higher performance of models.

3https://github.com/juansgomez87/quad-pred

B. Classifiers

To effectively test the feasibility of cross-domain transfer-
ability, and to verify that our models are indeed language-
sensitive, we test three scenarios: (1) Models with the same
architecture as our SCAE trained only on music (Baseline
CNN on Table II), (2) One-step transfer learning (i.e., without
unfreezing weights) yields a feature extractor trained only on
speech and a classifier trained on music, which we hypothesize
should retain emotion-related representations from speech in
each language, and (3) Intra-linguistic configurations which we
hypothesize should show improved performance over cross-
linguistic configurations (i.e., a model pre-trained with Lib-
rispeech and fine-tuned with 4Q-Emotion should have a higher
performance than a model fine-tuned on CH-818).

Classification results are summarized in Table II. The out-
come of using a CNN trained only on music results in poor
performance (F-score ∼ 0.32) for both music data sets. This
suggests that although the architecture could be improved
to obtain better performance, our SCAE models exploit the
data learned during pre-training positively obtaining higher
performance with the same architecture. Secondly, using the
SCAE exclusively as a feature extractor shows average perfor-
mance for all configurations (F-score ∼ 0.48). Nonetheless, it
outperforms the baseline CNN, suggesting that the features
learned during pre-training are generally transferable to music
as well, confirming the findings from [8]. Further inspection
using confusion matrices shows that in both intra-linguistic
(eng2eng and man2man) and cross-linguistic (eng2man and
man2eng) settings, the principal confusions are made between
Q1 and Q2 (both with positive arousal) and Q3 and Q4 (both
with negative arousal). This confirms research where arousal
is more easily predicted, since it relates to features such as
tempo and loudness, while valence is more subjective and
cultural-specific [5]. Our model (SCAE-Full) improves quad-
rant, arousal, and valence prediction in most cases (man2man,
man2eng, and eng2eng) w.r.t. SCAE-Feat. Ext., demonstrat-
ing benefits of fine-tuning with music. Although the SCAE-
Full does not outperform the DAE-Classifier for man2eng,



eng2eng, and eng2man, our model is solely based on mel-
spectrogram pattern recognition, while the DAE relies on
previously extracting carefully hand-crafted features.

Finally, preliminary results suggest that the hypothesized
improvement of intra-linguistic models over cross-linguistic
models is feasible (highlighted in bold): eng2eng achieves
an improvement up to ∼18% F-scores over eng2man in
DAE-Classifier and in the SCAE-Full model, improving the
prediction of quadrants, arousal, and valence. It must be noted
that the amount of data for each speech dataset might differ
fine-tuning results. In general, our DAE reproduction does
not exhibit language-sensitive features (eng2eng outperforms
eng2man, but not man2man over man2eng). Interestingly,
man2man shows similar performance to man2eng in the full
model (SCAE-Full). We argue that a possible reason is the ex-
istence of confounding acoustic features of excerpts belonging
to Q2 (angry) and Q4 (relaxed) in CH-818. The CH-818 data
set contains mainly pop music with high acoustic homogeneity.
In contrast in 4Q-Emotion, Q2 contains fragments of rock
and metal, which have very distinctive acoustic features (i.e.,
guitar distortion, screaming voice). With respect to languages,
we find that our model shows language-sensitive features
for Mandarin (tonal) in the SCAE-Feat. Ext. configuration,
while showing it for English (non-tonal) in the SCAE-Full
configuration.

V. CONCLUSIONS

In this work, we present preliminary results on MER
language-sensitive models obtained by using transfer learning
on different neural network architectures. We first reproduced
the work of [8], and evaluated its performance on the clas-
sification task, while taking into account the language of
speech and music. With respect to our research questions: (1)
We proposed sparse convolutional autoencoders for automatic
high-level feature learning of mel-spectrograms using a MTL
approach. Our approach is based on feature learning as op-
posed to the existing model that uses hand-crafted features,
and shows partial evidence of the plausibility of language-
sensitive models. (2) We show that pre-training on speech
can result beneficial for MER, and our surveys confirm pre-
vious research w.r.t. cultural differences in musical emotion
perception, motivating this study. As future work, we intend
to improve the unsupervised learning phase to extract better
features from speech and perform transfer learning on more
similar domains (i.e., speech and choir music).
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