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Abstract—We address the problem of computing efficient
time-frequency and time-scale representations of non station-
ary multicomponent signals. Recently, a new time-reassigned
synchrosqueezing method designed for the short-time Fourier
transform (STFT) was introduced to improve the energy concen-
tration of impulsive or strongly modulated signals. Following this
idea, we now propose to extend this approach to the Stockwell
transform (S-transform) that is related to the Morlet wavelet
transform and which provides time-frequency representations
with a frequency-dependent resolution. In this study, we derive
an enhanced second-order group delay estimator designed for
the S-transform to deal with strongly amplitude- and frequency-
modulated signals. Hence, this estimator is used to obtain a
novel horizontal synchrosqueezing transform that is evaluated in
numerical experiments involving multicomponent non-stationary
signals.

Index Terms—S-transform, wavelet, time-frequency, horizontal
synchrosqueezing, group-delay estimation

I. INTRODUCTION

Natural signals arising from audio, biomedicine, seismic
or radar can be modeled as a mixture of non-stationary
components that must be disentangled through a suitable
methodology. Among popular methods, time-frequency (resp.
time-scale) analysis methods with the Short-Time Fourier
Transform (STFT) and the Continuous Wavelet Transform
(CWT) offer an efficient framework for efficiently representing
a large variety of signals [1]. Due to several limitations which
can mostly be explained by the Heisenberg-Gabor uncertainty
principle, several promising post-processing methods were
introduced to enhance the readability of a time-frequency
representation (TFR). The reassignment [2], [3] and the syn-
chrosqueezing methods [4], [5] were proposed to sharpen a
TFR by moving the transforms values to more accurate coor-
dinates which are close to the exact time-frequency support of
the signal, resulting in an enhanced readability. The current
renew of interest for such techniques can be explained by
the capability of the synchrosqueezing to compute reversible
TFRs which paves the way of advanced processing methods for
disentangling and extracting the elementary signal components
(modes) [6], [7]. Nowadays, synchrosqueezing is continu-
ously improved by several extensions and theoretical studies
allowing to deal with amplitude- and frequency-modulated
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signals [8], [9], [10], [11]. In [12], [13], the Levenberg-
Marquardt algorithm is used to make the reassignment and the
synchrosqueezing adaptive and more robust to noise through a
damping parameter. These methods have shown their potential
for disentangling multicomponent non-stationary signals and
to extract physically interpretable atoms [6].

In this study, we introduce an enhanced second-order group
delay estimator designed for the Stockwell transform (also
called S-transform) [14] allowing the computation of a recently
introduced method called time-reassigned synchrosqueezing
[15]. The S-transform can be considered as a special case
of the Morlet wavelet transform and can be viewed as a
frequency-dependent STFT, as the constant-Q transform [16].
It is a full of interest time-frequency transform for theoretical
investigations and practical applications. Hence, the present
work introduces for the S-transform a new specific second-
order horizontal synchrosqueezing technique and extends our
previously proposed method presented in [8].

The paper is organized as follows. The S-transform is
presented in Section II with its properties and its relations
with the CWT. In Section III, we recall the principle of the
reassignment method and we introduce the time-reassigned
synchrosqueezed S-transform before the derivation of a group
delay estimator designed for computing a novel second-order
horizontal synchrosqueezed S-transform. In Section V, we
present numerical results of the proposed methods for ef-
ficiently computing TFRs before concluding the paper with
future work directions in Section VI.

II. S-TRANSFORM DEFINITION AND PROPERTIES

A. Definition

The S-transform of a zero-mean signal x can be defined
at any time t and frequency ω as a STFT using a frequency-
dependent analysis window h, expressed as [14]:

SThx(t, ω) =
|ω|
ω0

∫ +∞

−∞
x(τ)h

(
ω

ω0
(t− τ)

)∗
e−jωτ dτ (1)

where j2 = −1 and z∗ is the complex conjugate of z. In the
original version (considered in this work), h is chosen as a
Gaussian window parameterized by a time-spread parameter
T as h(t) = g(t, T ) = 1√

2πT
e−

t2

2T2 , enabling us to write:



STgx(t, ω) =
|ω|
ω0

∫ +∞

−∞
x(τ)g

(
|ω|
ω0

(t− τ), T

)∗
e−jωτ dτ (2)

= e−jωt
∫ +∞

−∞
x(t+ τ)g

(
−τ, ω0T

|ω|

)∗
e−jωτ dτ (3)

where T corresponds to the width of the Gaussian window g
when ω = ω0. This allows us to derive mathematical expres-
sions involving only an adimensional parameter f0T = 1

2πω0T
where f0 is a central frequency parameter expressed in Hz. The
S-transform can also be computed in the frequency domain
using the following expression that can be deduced from the
Plancherel theorem (detailed proof in [17]):

STgx(t, ω) =

∫ +∞

−∞
Fx(ω + Ω)Fh

(ω0

ω
Ω
)∗

ejΩt
dΩ

2π
(4)

where Fx denotes the Fourier transform of signal x and:

Fh(ω) =

∫ +∞

−∞
h(t) e−jωt dt = e−

ω2T2

2 . (5)

As for the spectrogram and the scalogram, computed by squar-
ing the modulus of the transform, a TFR called stockwellogram
is defined as |STx(t, ω)|2.

B. Marginalization and inversion formula

Marginalization of the S-transform with respect to time
leads to:∫ +∞

−∞
STgx(t, ω) dt =

∫∫
R2

Fx(ω + Ω)Fh

(ω0

ω
Ω
)∗

ejΩt
dΩ

2π
dt

(6)

=

∫
R
Fx(ω + Ω)Fh

(ω0

ω
Ω
)∗
δ(Ω) dΩ (7)

= Fx(ω)Fh(0)∗ (8)

that is equal to Fx(ω) when a Gaussian window is used (i.e.
Fh(0) = 1). Hence x can finally be reconstructed by applying
the inverse Fourier transform which leads us to:

x(t) =
1

2π

∫∫
R2

STgx(τ, ω) ejωt dτdω. (9)

C. Relation with the continuous wavelet transform

The CWT of a signal x is defined at each time t and scale
s for an admissible mother wavelet Ψ (i.e. satisfying CΨ =∫
R |FΨ(ω)|2 dω|ω| < +∞) as [18]:

Wx(t, s) =
1√
|s|

∫ +∞

−∞
x(τ)Ψ

(
τ − t
s

)∗
dτ (10)

If we define the scale as s = ω0

ω , Eq. (10) can be expressed
as a time-frequency transform as:

CWx(t, ω) =

√
|ω|
ω0

∫ +∞

−∞
x(τ)Ψ

(
ω

ω0
(τ − t)

)∗
dτ. (11)

Now, if we use the Morlet wavelet [18], [1] given by:

Ψ(t) =
π−1/4

√
T

e
−t2

2T2 ejω0t (12)

we finally obtain MWx(t, ω) =√
|ω|

ω0T
√
π

∫ +∞

−∞
x(τ) e

−ω
2(t−τ)2

2(ω0T )2 e−jω(τ−t) dτ (13)

=

√
2
√
πω0T

|ω|
ejωtSTgx(t, ω) (14)

Thus, the S-transform can be expressed as:

STgx(t, ω) =

√
|ω|

2
√
πω0T

e−jωt MWx(t, ω) (15)

which corresponds to the Morlet Wavelet transform multiplied
by a frequency-dependent scaling factor which increases with
the frequency. This is the reason why the S-transform can be
considered as a special case of the wavelet transform [19].

III. REASSIGNMENT AND SYNCHROSQUEEZING OF THE
S-TRANSFORM

A. Reassignment of the Stockwellogram

The reassignment method [2], [3] aims at sharpening a TFR
by moving its energy from (t,ω) to (t̂x,ω̂x), to improve the
readability of the analyzed signal. For the S-transform, the
reassignment operators can be computed as follows (cf. [17]
for the detailed non-trivial proof):

t̃x(t,ω) = t− STT gx (t,ω)

STgx(t,ω)
, ω̃x(t,ω) = jω +

STDgx (t,ω)

STgx(t,ω)
,

(16)

t̂x(t, ω) = Re(t̃x(t, ω)), ω̂x(t, ω) = Im(ω̃x(t, ω)) (17)

with T g(t) = tg(t) and Dg(t) = dg
dt (t).

Hence, the reassigned stockwellogram can finally be computed
as Rx(t, ω) =∫∫

R2

|STgx(τ,Ω)|2 δ
(
t− t̂x(τ,Ω)

)
δ (ω − ω̂x(τ,Ω)) dτ dΩ.

(18)

B. Time-reassigned Synchrosqueezed S-transform

To tackle the non-reversibility of the reassignment method,
synchrosqueezing proposes to move the signal transform in-
stead of its squared modulus, to preserve the phase information
of the original transform [5]. As firstly proposed for the STFT,
we introduce here a new time-reassigned synchrosqueezed
S-transform that is deduced from the marginalization with
respect to time (cf. Section II-B) and which can be defined
as:

Sgx(t, ω) =

∫
R

STgx(τ, ω) δ
(
t− t̂x(τ, ω)

)
dτ. (19)

where t̂x(t, ω) is a group delay estimator computed using
Eq. (17). Hence, its marginalization with respect to time leads
to:∫

R
Sgx(t, ω)dt =

∫∫
R2

STgx(τ, ω)δ
(
t− t̂x(τ, ω)

)
dτdt (20)

=

∫
R

STgx(τ, ω)dτ = Fx(ω) (21)



which enables us to derive the following exact signal recon-
struction formula:

x̂(t) =

∫∫
R2

Sgx(τ, ω) ejωt dτ
dω

2π
. (22)

As a result, the time-reassigned synchrosqueezed S-transform
provides a sharpened and reversible TFR designed for dealing
with impulsive or strongly modulated signals. It also allows to
recover the signal components by applying a filtering operation
as proposed for the STFT in [8].

IV. A SECOND-ORDER HORIZONTAL SYNCHROSQUEEZED
S-TRANSFORM

A. Signal model and properties

Now, we consider the AM/FM signal model expressed as:

x(t) = eλx(t)+jφx(t) (23)

with λx(t) = lx + µxt+ νx
t2

2
(24)

and φx(t) = ϕx + ωxt+ αx
t2

2
(25)

where λx(t) and φx(t) are respectively the log-amplitude and
the phase with qx = νx + jαx and px = µx + jωx.
This signal model verifies dx

dt (t) = (qxt + px)x(t) which
enables us to write ∂STgx

∂t (t, ω) = STDgx (t,ω) =

− jωSTgx(t,ω)+ e−jωt
∫
R

dx

dt
(t+ τ)g(−τ, ω0T

|ω|
)∗ e−jωτdτ

=− jωSTgx(t,ω) + (px + qxt)STgx(t,ω)− qxSTT gx (t,ω) (26)

When |STgx(t, ω)| > 0, dividing by STgx(t, ω) leads to:

STDgx (t, ω)

STgx(t, ω)
= px − jω + qx

(
t− STT gx (t, ω)

STgx(t, ω)

)
(27)

= px − jω + qxt̃x(t, ω) (28)

and finally we have ω̃x(t, ω) = px + qxt̃x(t, ω). Differenti-
ating again with respect to t allows to obtain an estimator
q̂x(t, ω) = ∂ω̃x(t,ω)

∂t /∂t̃x(t,ω)
∂t that can be computed using

several S-transforms with specific windows:

q̂x(t, ω) =
(STDgx (t,ω))2 − STD

2g
x (t,ω)STgx(t,ω)

STT Dgx (t,ω)STgx(t,ω)− STT gx (t,ω)STDgx (t,ω)
(29)

where D2g(t, T ) = d2g
dt (t, T ) and T Dg(t, T ) = tdgdt (t, T ).

B. Enhanced second-order group delay estimator

Second-order horizontal synchrosqueezing [8] consists in
moving STgx(t,ω) from the point (t,ω) to the point (t(2)x ,ω) such
that dφx

dt (t
(2)
x ) = ωx + αxt

(2)
x = ω. This leads to:

t(2)
x =

ω − ωx
αx

= t̂x(t,ω) +
ω − ω̂x(t,ω)

αx
+
νx
αx

Im(t̃x(t,ω)) (30)

which can be estimated by:

t̂(2)
x (t,ω)=

{
ω−ω̂x(t,ω)+Im(q̂x(t,ω) t̃x(t,ω))

Im(q̂x(t,ω)) if Im(q̂x(t,ω)) 6=0

t̂x(t, ω) otherwise
(31)

where q̂x(t,ω) is estimated using Eq. (29).
Finally, a new second-order horizontal synchrosqueezed S-

transform is obtained using Eq. (19) by replacing the group
delay estimator t̂x(t, ω) by t̂(2)

x (t, ω) given by Eq. (31).

V. NUMERICAL EXPERIMENTS

A. Implemention issues

Our implementation1 of the S-transform is based on Eq. (3)
that is discretized as STgx[k,m]≈STgx( k

Fs
, 2πmFsM ), Fs being

the sampling frequency. The computation is based on the
rectangle approximation method where k ∈ Z is the time
sample index and m ∈ M is the discrete frequency bin.
The number of frequency bins M is chosen as an even
number such as M = [−M/2 + 1;−1] ∪ [1;M/2]. Since a
Gaussian function is defined on ] − ∞; +∞[, a threshold Γ
is applied to obtain a finite number of time samples Km to
be considered for the integration at frequency bin m such as

e
−m

2(Km/2)
2

2(f0T )2M2 ≤ Γ, which leads to:

Km ≥
2Mf0T

√
2 log(1/Γ)

|m|
. (32)

Hence, a small value for Γ leads to a large value for Km

and an increase of the computation time. Our experiments
use Γ = 10−4 which provides good results with a reasonable
computation time in practice. When a signal reconstruction is
required, a zero-padding of 2K1 samples is applied to improve
the reconstruction quality (cf. Table I).

B. TFR of a synthetic signal

In this experiment, we analyze a synthetic multicomponent
real-valued signal with 500 time samples, that is made of
two impulses, one sinusoid, one chirp and one sinusoidally
modulated sinusoid. Fig. 1 compares the resulting TFRs pro-
vided respectively by the STFT (Gabor transform) and the S-
transform (i.e. rescaled Morlet wavelet transform) through the
squared modulus of the original transform (i.e. spectrogram
and stockwellogram) and the first- and second-order time-
reassigned horizontal synchrosqueezing transforms. Our com-
putations use M = 600, f0T = 2 and L = TFs = 10
for the STFT with a Signal-to-Noise Ratio (SNR) equal to
25 dB obtained by the addition of a Gaussian white noise.
The TFRs provided by the existing methods are computed
using the MATLAB implementions brought by the ASTRES
toolbox [6]. The results show a clear improvement attested
in terms of Rényi Entropy (RE) [9] (a lower RE corresponds
to a better energy concentration of the TFR) provided by
the second-order horizontal synchrosqueezing in comparison
to the first-order version and the original transform TFRs
for representing modulated components. Moreover, the new
horizontal synchrosqueezed S-transform obtains a better RE in
comparison to the STFT-based method on this multicomponent
signal. This result can be explained by the two impulses which
are almost perfectly located in the high frequencies due to the
frequency-dependent resolution of the S-transform.

1Matlab codes freely available at https://fourer.fr/sthsst
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(a) spectrogram
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(b) time-reassigned synchrosqueezed STFT

SNR=25.00 dB, L=10.00, RE=4.99 bits

50 100 150 200 250 300 350 400 450 500

time samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n
o

rm
a

liz
e

d
 f

re
q

u
e

n
c
y

(c) second-order horizontal synchrosqueezed STFT
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(d) stockwellogram
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(e) time-reassigned synchrosqueezed S-transform
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(f) second-order horizontal synchrosqueezed S-
transform

Fig. 1. Comparison of the resulting TFRs with Rényi Entroy (at order α = 3) of a synthetic multicomponent signal. The TFRs of the synchrosqueezing
methods (b),(c), (e) and (f) correpond to their squared modulus.

C. Signal reconstruction results
To assess the reconstruction capability of the proposed

transforms, we compare in Table I the Reconstruction Quality
Factor (RQF) defined by:

RQF(x, x̂) = 10 log10

( ∑
k |x[k]|2∑

k |x[k]− x̂[k]|2

)
, (33)

computed for the multicomponent signal presented in Fig. 1.
As expected, the first- and second-order horizontal syn-
chrosqueezed S-transforms obtain the same RQF with Eq. (22)
as the S-transform using Eq. (9). The results show the effect
of the number of frequency bins M which should at least be
equal to the length of the analyzed signal, and the effect of
the threshold Γ (b) which can increase the computation cost
when too low and for which 10−2 is a suitable value.

Despite these reconstruction results are excellent (RQF
above 50 dB), they appear to be lower than those we previously
obtained with the STFT-based horizontal synchrosqueezing
(using a Gaussian window) when the same value of M is
used [8]. This could be explained by the logarithmic frequency
resolution of the S-transform combined with the use of a
uniform sampling of the frequency bins in our numerical
implementation that is probably not optimal. This point may
require further investigation that is scheduled in our future
work.

TABLE I
RECONSTRUCTION QUALITY OF THE S-TRANSFORM, THE FIRST- AND THE

SECOND-ORDER HORIZONTAL SYNCHROSQUEEZED S-TRANSFORMS
USING THE SIGNAL PRESENTED IN FIG. 1 WITH f0T = 2, M VARYING

FROM 300 TO 2000 (A) AND Γ VARYING FROM 10−1 TO 10−4 (B).

(a) M (Γ = 10−4) 300 500 1000 2000
RQF (dB) 0.85 54.10 60.12 66.14

(b) Γ (M = 500) 10−1 10−2 10−3 10−4

RQF (dB) 53.45 54.10 54.10 54.10

VI. CONCLUSION

We have proposed a novel second-order time-reassigned
synchrosqueezing of the S-transform based on an enhanced
group delay estimator to deal with impulses and strongly
modulated components. The proposed method can efficiently
be computed using several S-transforms with specific analysis
windows and presents interesting theoretical links with the
STFT and the CWT. Our results show that the new proposed
transform can obtain a better readability than the STFT-based
horizontal synchrosqueezing for strongly modulated signals. In
future work, we expect to further investigate the new proposed
group delay estimator and to consider real-world application
scenarios with a particular attention to propose numerically-
efficient implementations.
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