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Abstract—Multidimensional signal processing is receiving a lot
of interest recently due to the wide spread appearance of
multidimensional signals in different applications of data science.
Many of these fields rely on prior knowledge of particular
properties, such as sparsity for instance, in order to enhance
the performance and the efficiency of the estimation algorithms.
However, these multidimensional signals are, often, structured
into high-order tensors, where the computational complexity and
storage requirements become an issue for growing tensor orders.
In this paper, we present a sparse-based Joint dImensionality
Reduction And Factors rEtrieval (JIRAFE). More specifically, we
assume that an arbitrary factor admits a decomposition into a
redundant dictionary coded as a sparse matrix, called the sparse
coding matrix. The goal is to estimate the sparse coding matrix
in the Tensor-Train model framework.

Index Terms—Sparse coding, High-order tensors, Tensor train,
Constrained tensor decomposition, Fast algorithms.

I. INTRODUCTION

Sparse coding has been, for a long time, a common topic
in different signal processing fields, such as sound source
separation [1], digital sampling [2] and feature extraction [3].
The growing interest of multidimensional signals, such as in
sensor array processing [4] and the biomedical field [5], led to
the need for efficient frameworks to deal with these particular
data structures. The multidimensional signals are, in this work,
structured into high-order tensors [6]. The tensor network
frameworks developed for high-order tensor decomposition
into a graph-connected low order tensors are suitable for
applications where the dimensionality/order is an issue, since
many methods have been proposed to overcome the so called
“curse of the dimensionality” [7]. This problem occurs when
the order of the tensor increases, leading to an exponential
increase of the number of the tensor’s entries, which means an
exponential increase for computational/memory requirements
and low convergence rate. Moreover, tensor decomposition
models present many beneficial properties, such as uniqueness
for the canonical polyadic decomposition (CPD) [8]. Unique-
ness means that it exists only one possible set of factors
that generates the tensor up to mild ambiguities. However,
the estimation problem of the factors is usually done using
iterative algorithms such as gradient-based approach in [9],
using a non-linear conjugate gradient (NCG) algorithm, or
alternating least squares (ALS) in [10] and their variants.
These algorithms may encounter some convergence problems,

especially in high-order tensor cases and in the presence of
noise [11], where they require a high number of iterations
and they present a low convergence rate, in addition to the
presence of outliers. When a priori knowledge on the data
structure is available, considering structural constraints in the
estimation scheme can help to both, reduce the computational
cost and help changing the ill-posed estimation problem into a
better-posed one [12]. Several constraints can be found in the
literature, such as the sparsity [13] or the structured factors
constraints[14] to mention a few.
In the sequel, a dictionary parameterized factor constraint is
considered. This constraint considers that at least one factor
of the CP tensor is parameterized by a linear combination
of atoms from a dictionary. A binary column-sparse coding
matrix selects the atoms in the dictionary. However, the high-
order tensor case is still an open problem, which limits the
tensor structures that we may consider. In order to deal
with this problem, we propose a methodological approach
based on Joint dImensionality Reduction And Factors rEtrieval
(JIRAFE) scheme [15]. This scheme is based on the tensor-
train (TT) model [16], adding sparsity constraint, to estimate
the sparse coding matrix in the case of a high-order tensors.
Notations: Vectors, matrices and tensors are represented by x,
X and X , respectively. The symbols (·)T and (·)† denote,
respectively, the transpose and the Moore–Penrose inverse
matrix. The Frobenius norm is defined by || · ||F . The n-mode
product is denoted by ×n and the tensor contraction by ×p

q .
The tensor IQ,R, is a hypercube with ones on the diagonal and
zero otherwise, denotes the identity tensor of size R×R×. . .×
R. The matrix X(k0) of size Nk0×N1 · · ·Nk0−1Nk0+1 · · ·NQ

refers to the k0-mode unfolding of X of size N1× · · · ×NQ.

II. DICTIONARY-BASED PARAMETERIZED CANONICAL
POLYADIC DECOMPOSITION

A. Canonical polyadic decomposition

A Q-order rank-R CPD tensor X ∈ CN1×N2×...×NQ is given
by (1) as

X = IQ,R ×1 P 1 ×2 . . .×Q PQ, (1)

where P q ∈ CNq×R, for 1 ≤ q ≤ Q, are called the factor
matrices.
Many methods that are found in the literature, including



alternating least squares, allow the estimation of these factors
by minimizing the following objective function

f(P 1, . . . ,PQ) = ||X −IQ,R×1P 1×2 . . .×QPQ||2F . (2)

B. Sparse dictionary-parameterized factors

For a fixed index k0, the k0-th factor P k0
is dictionary-based,

i.e., the columns of P k0
are obtained by a linear combination

of the atoms of a dictionary. It is written as

P k0 = DS, (3)

where D is a known over-complete dictionary matrix, of
size Nk0 × M , whose columns are called the atoms, with
M � Nk0

. The sparse matrix S, of size M × R, is called
the selection matrix and it is used to select columns of the
factor P k0

from the dictionary. In the following, we will
consider a particular binary structure for S where only one
element is non-zero in each column. Hence, we can write the
sparsity constraint on the columns of the sparse coding matrix
as ‖si‖0 = 1, for i ∈ {1, . . . , R} [17]. The problem in this
case, is to determine the support of the sparse coding matrix
S, i.e, the row index of the non-zero elements.

The objective function of this dictionary-based CPD problem
is, then, defined as in [17] where the authors propose an
objective function by adding the sparsity constraint to the CPD
objective function defined in (2). This problem is referred to
as Dictionary based CPD (DCPD).

C. Limitations

The problem presented in the previous section encounters con-
vergence problems due to the projection of the parameterized
factor on the dictionary [17]. However, the major limitation
is witnessed in the high-order tensors case due to the curse
of dimensionality. Moreover, in order to estimate the sparse
coding matrix S, the estimation of all the factors P q , for
q ∈ {1, . . . , Q}, is inevitable, which makes the computational
and storage cost expensive when only the estimation of the
dictionary-parameterized factor is targeted.
In the next section, we will propose a new scheme allowing
the estimation of matrix S, without the need to estimate all the
factors, and which is based on a semi-iterative methodology.

III. DICTIONARY-BASED JIRAFE

In this section, we propose a new scheme based on TT decom-
position, as a solution to mitigate the curse of dimensionality,
using a modified JIRAFE scheme [15, 18] to take into account
the sparsity. The JIRAFE framework is composed of two steps.
A first dimensionality reduction step that mitigates the original
high-order tensor X into 3 order tensors called TT-cores. In
the second step, and given the known structure of the TT-cores,
different solutions can be considered to retrieve the factors P q .
In this paper, we will consider the decomposition of the k0-th
TT-core and estimate the factor P k0 that is dictionary-based
(i.e. estimate the sparse coding matrix S).

A. Tensor Train model

Let us assume a Q-order CPD tensor X of canonical rank R,
where all the factors P q are full column rank. In addition, the
k0-th factor P k0

is assumed to be parametrized, i.e., written
in terms of a dictionary D and a sparse matrix S as in (3).

The equivalence result between the CP model and the TT
model in [15] allows us to write the CP tensor X following
a TT format as:

X = G1×1
2G2×1

3 . . .×1
k0

Gk0
×1

k+1 . . .×1
Q−1GQ−1×1

QGQ,

with
Gq = I3,R ×1 M q−1 ×2 P q ×3 M

−T
q ,

Gk0 = I3,R ×1 Mk0−1 ×2 DS ×3 M
−T
k0
,

G1 = P 1M
−1
1 ,

GQ = MQ−1P
T
Q,

where Gq is the q-th TT-core tensor of size R × Nq × R,
and R is the TT-rank. The matrices M q , of size R × R, are
the change-of-basis matrices for 1 ≤ q ≤ Q − 1 that appear
when extracting the dominant singular sub-spaces [19]. The
identifiability problem is solved when the matrices M q are
estimated.
It is to be mentioned that the rank of the TT-cores is equivalent
to the canonical rank of tensor X [15].

B. Proposed scheme

As mentioned in the previous section, the first step of JIRAFE
scheme is the TT-decomposition which is done by minimizing
the objective function

f(G1,G2, . . .GQ) = ‖X −G1 ×1
2 G2 ×1

3 . . .×1
Q GQ‖2F ,

using algorithms such as the tensor-train singular value de-
composition (TT-SVD) [16] or the TT hierarchical SVD (TT-
HSVD) [19]. As a result we estimate the TT-cores including
the k0-th TT-core whose decomposition allows us to estimate
the k0-th factor. Hence, we can define the second step, which
is the estimation of the k0-th factor from the k0-th TT core
by minimizing the objective function

f̃(P k0 ,S) = ‖Gk0 − I3,R ×1 Mk0−1 ×2 P k0 ×3 M
−T
k0
‖2F

+ ‖P k0
−DS‖2F

subject to ‖si‖0 = 1.
(4)

Processing only the k0-th TT-core Gk0
related to the factor

P k0 allows us to mitigate the high Q-order DCPD problem
into a smaller/easier 3-order DCPD problem expressed in (4).
In fact, the estimation of the selection matrix S is done in
two steps: first we estimate the TT-core Gk0

using a TTD
algorithm. Then, we estimate the factor P k0

using a simple
Tri-ALS algorithm [20] in which simultaneous orthogonal



matching pursuit (SOMP) [21] is involved in order to estimate
the sparse coding matrix S using P k0 and the dictionary
matrix D, as explained in algorithm 1. In our case, since only
one element is non zero in each column of the sparse coding
matrix (‖si‖0 = 1), the SOMP algorithm can be reduced to
simply computing the angle between the factor vectors and
the dictionary atoms.

Algorithm 1 D-JIRAFE

Input: Tensor X , dictionary D and rank R
Output: Sparse coding matrix S

1: TT-cores estimation
[G1,G2, . . . ,GQ−1,GQ] = TTD(X , R)

2: Repeat

Estimation of P k0
from Gk0

using one Tri-ALS iteration
as follows
Mk0−1 = G

(1)
k0

[(M−T
k0
� P k0)

T ]†

P k0 = G
(2)
k0

[(M−T
k0
�Mk0−1)

T ]†

M−T
k0

= G
(3)
k0

[(P k0 �Mk0−1)
T ]†

Estimation of matrix S
S = SOMP(D,P k0

)

Update P k0 using the estimated S
P k0 = DS

Until fit ceases to improve or maximum iterations
exhausted

For the applications where only the dictionary-based factor
is targeted, algorithm 1 is sufficient. However, in order to
estimate the rest of the factors, we take advantage of the
coupling between the TT-cores [22], i.e., the change of basis
matrix Mk0−1 is used with the TT-core Gk0−1 in a Bi-ALS
in order to estimate the factor P k0−1. The Bi-ALS is a 3-
order ALS to decompose a 3-order tensor but with a known
(pre-estimated) matrix. It is to be mentionned that a closed-
form solution could be used instead of Bi-ALS [15]. In the
same way, the matrix Mk0

is used to estimate P k0+1 in
parallel. Hence, the parallel estimation of the factors on the
right and left side is done by using the change-of-base matrices
estimated in the previous steps as shown in Fig. 1.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we will present the numerical results obtained
by applying D-JIRAFE on 4-order, 6-order and 8-order tensors
and we compare it to the DCPD [17]. The dimensions of the
tensor are Nq = 10 for q ∈ {1, . . . , k0 − 1, k0 + 1, . . . , Q},
while Nk0

= 30. The canonical rank of the tensor is 3. The
simulations were performed on a computer equipped with an
Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz (8 CPUs),
2.1GHz processor and 32Gb RAM.
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Fig. 2: Success rate (%) in function of the number of atoms
in the dictionary (SNR = 20dB)
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Fig. 1: The graph modelization in this figure represents the TT-model, where each bow represents a dimension. Hence, the
nodes that are connected with 3 bows are 3-d identity tensors, while the nodes connected with only 2 bows are the matrices.
The dashed lines encircle the 3-d TT-core tensors.

TABLE I: Execution time in function of the number of atoms
in the dictionary (order 6, SNR=20dB)

N# of atoms D-JIRAFE ×10−3 DCPD ×10−3 Gain
50 10.06 (s) 67.18 (s) 6.67

250 12.62 (s) 75.6 (s) 5.99
500 12.38 (s) 76.75 (s) 6.2

TABLE II: Execution time in function of the order for 250
atoms in the dictionary (SNR=20dB)

Tensor order D-JIRAFE ×10−3 DCPD ×10−3 Gain
4 5.20 (s) 7.96 (s) 1.53
6 12.62 (s) 75.6 (s) 5.99
8 222.2 (s) 5151.6 (s) 23.18

Following the frameworks in [6, 17], we use a harmonic
dictionary D (Nk0

×M ) containing the modes {d1, . . . ,dM}
with

dm = [1, exp{j2πfm}, . . . , (exp{j2πfm})Nk0
−1]T ,

and fm ∈)0, 1) is the m-th frequency. We vary the size of the
dictionary (number of atoms) from 50 to 500 with a step of 50.
The sparse coding matrix is column-sparse and binary valued,
while the non-parameterized factor matrices follow a standard
complex normal distribution. White Gaussian noise is, then,
added in order to have a signal to noise ratio of 20dB and the
results are generated from 1000 trials. For the simulations, we
use the Tensorlab package for Matlab [23]. We compare the
two frameworks in terms of success rate, i.e., the number of
the trials in which the framework succeed to estimate the exact
support on the total number of trials, as well as the execution
time where we define a gain by dividing the execution time
of DCPD on the execution time of D-JIRAFE.

As we can see in Fig. 2, the success rate of our approach
and the DCPD is identical for small number of atoms. In
fact, the variation remains too small and insignificant when
we increase the number of atoms in the dictionary. Thereby,

when we increase the order from 4 to 8, the success rate does
not show any significant changing. A slight decrease is seen in
both algorithms as we increase the order. In fact, this is due to
the appearance of some outliers as the order increases. On the
other hand, Tab. I shows the execution time of the DCPD and
D-JIRAFE in function of the number of atoms in the case of
a 6-order tensor. The ratio of the execution time between the
two methods remains invariant when we increase the number
of atoms. However, Tab. II shows that, as the order of the
tensor increases, the ratio of the execution time increases in a
very significant way in the favor of D-JIRAFE.

V. CONCLUSION

Sparse coding is a common signal processing topic that founds
applications in many fields. Nevertheless, the multidimen-
sional signals presented by the recent application fields has
unveiled many challenges, as data structures are becoming
more massive in terms of dimensions and order. In this paper,
we presented a sparse-coding problem in the context of high-
order tensors. We have shown it was necessary to estimate all
the factors in order to estimate the selection support of a sparse
factor, which is computationally expensive. Thus, we proposed
a scheme in order to cope the problem of dimensionality, in
this case, by mitigating the high order tensor into a 3-order
tensors called the TT-cores. As a result, the estimation of
the sparse factor becomes a simple 3-order tensor problem,
considering the TT-core relative to the sparse factor. The
simulation results show that, as we increase the order, the
ratio in terms of execution time, between our approach, and the
approach that we took as a reference, increases in a significant
way. This makes it possible to deal with high-order tensors
with a lower computational complexity.
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