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Abstract—Direction-of-arrival (DoA) estimation is a mature 
topic with decades of history. Despite the progress in the field, 
very few papers have looked at the problem of DoA estimation 
with unknown dynamic range. Consider the case of space 
exploration or near-field and far-field emitters. In such settings, 
the amplitude of the impinging wavefront can be much higher 
than the maximum recordable range of the sensor, resulting in 
information loss via clipping or sensor saturation. In this paper, 
we present a novel sensing approach for DoA estimation that 
exploits hardware-software co-design and is pivoted around the 
theme of unlimited sensing. On the hardware front, we capitalize 
on a radically new breed of analog-to-digital converters (ADCs) 
which, instead of saturating, produce modulo measurements. On 
the algorithmic front, we develop a mathematically guaranteed 
DoA estimation technique which is non-iterative and backwards 
compatible with existing DoA algorithms. Our computer exper­
iments show the efficiency of our approach by estimating DoAs 
from signals which are orders of magnitude higher than the 
ADC threshold. Hence, our work paves a new path for inverse 
problems linked with DoA estimation and at the same time 
provides guidelines for new hardware development.

Index Terms—Direction of arrival (DoA) estimation, multi­
channel, non-linear sensing, sensor arrays, sampling theory.

I. INTRODUCTION

The art of using multiple sensors for spatio-temporal ac­
quisition of information has several decades of history. One 
of the core applications of sensor arrays is direction-of-arrival 
(DoA) estimation which dates back to the pioneering work 
of Marconi in the beginning of the 20th century [1], While 
DoA estimation is a mature topic [2], the advent of new 
hardware and applications continually pushes the envelope 
of the DoA algorithmic machinery. In the last many years, 
research efforts have been mainly focused towards exploring 
new array geometries [3]—[5] and designing algorithms for 
high resolution DoA estimation [6], [7].

DoA Estimation and Dynamic Range Problem. Our work is 
concerned with a different class of DoA estimation problems, 
where the amplitude range of the impinging signal is unknown 
and possibly much larger than the maximum recordable volt­
age of the analog-to-digital converter (ADC). This problem 
arises from practical contexts. We list two examples below.
• In space explorations, scientific equipment in the probe

employs sensor arrays for various tasks such as source

This work is supported by the UK Research and Innovation council’s 
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European Partners Fund 2019 (award no. G38037).
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Fig. 1: Direction of arrival estimation using unlimited sensing architecture [8]-
[10], Modulo non-linearity maps high-dynamic-range, sensor array samples 
into low-dynamic-range folded samples. While the modulo operation prevents 
the sensor saturation problem, it leads to a new form of information loss which 
can be handled by capitalizing on the idea of unlimited sampling.

localization and sub-surface mapping. In foreign environ­
ments, for instance radar systems on lunar surfaces [11], 
the range of signal amplitudes is unknown and automatic 
gain control (AGC) is employed either during capture or 
in post-processing. NASA’s Apollo Mission report [12] 
elaborates on the omnipresent use of AGCs and reports 
the sensor saturation problem (cf. pg 43, [12]). Even if 
the ADCs (equipped with AGCs) are calibrated, bursts and 
spikes [13] can saturate the sensor array, resulting in clipped 
measurements. This typically happens in the case of radars 
and seismic systems.

• A more familiar example of sensor array saturation stems 
from the near-far problem. Suppose that only two emitters 
are considered, and one of them is much closer to the 
receiver than the other. Then, the ADC can either focus 
on the near-field emitter, drowning the far-field emitter in 
quantization noise, or aim at retrieving the information of 
the far-field emitter, clipping the samples of the near-field 
emitter [14],
Beyond the problems listed above, the general trend in 

the recent years has been to use ADCs which can work 
with wideband receivers. It is well established that wideband 
ADCs require higher dynamic range [15], [16]. Surprisingly,
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despite the significant advancements in DoA estimation, very 
few papers pose the problem with dynamic range constraints. 
To this end, a notable example is the work of Bar-Shalom 
and Weiss [17] who present the idea of one-bit ADC based 
DoA estimation. This approach circumvents the problem of 
clipping and even using AGCs. However, the one-bit mode 
of operation is at the other end of the spectrum of solutions 
—entire signal information is lost and only DoAs can be 
estimated. While this low-complexity solution is aptly justified 
for wireless communications, in many applications it is of 
interest to recover the signal itself. For example, in space 
exploration, experiments entail exorbitant costs and are non­
repeatable. Similarly, in bio-medical [18] and ultrasound [19] 
applications, the signal itself encodes important information.

Solution via Modulo Non-Linearity. In what follows, we will 
present a new approach to the DoA estimation problem based 
on co-design of hardware and algorithms. Our work capitalizes 
on the recent developments around unlimited sensing [8]-[10]. 
Instead of working with conventional, point-wise samples of 
a function, which may be clipped, we opt to use folded am­
plitudes in the interval [—A, A], where A > 0 is the maximum 
recordable voltage of the ADC. On the hardware side, injecting 
modulo non-linearity in the sensing process results in folded 
measurements, as shown in Fig. 1. Mathematically, this can 
be written in terms of the following operator,

F x : t  ^  2A
t 1

2A +  2 (1)

where F  (■) is the conventional, centered modulo operation, 
and [t] =  t -  |_tj denotes the fractional part of t. Hence, 
arbitrarily high amplitudes beyond the dynamic range of 
the ADC are folded back into the recordable range [-A , A] 
(cf. Fig. 1). Thanks to the recent, radical advances in ADC 
design technology, such non-linearities can be implemented 
via folding or self-reset ADCs [20], [21]. For further dis­
cussion on the link between folding ADCs and modulo non­
linearities, we refer the readers to [9]. Even when the problem 
of recovering measurements from modulo samples is highly 
ill-posed, a sampling theorem and algorithm applicable to 
bandlimited functions have been already proposed in [8], [9]. 
The main result is as follows,

Theorem 1 (Unlimited Sampling Theorem [8]). Let x (t)
be a continuous-time, finite-energy, bandlimited function with 
maximum frequency Q and let y [n] =  F  (x (nT )) be its 
modulo samples with sampling rate T. Then, a sufficient 
condition for recovery o f x (t) from its modulo samples (up to 
an additive multiple o f  2A) is T  < 1/2Qe.

Remarkably, this sampling theorem does not depend on A 
and depends only on the signal bandwidth; just like Shannon’s 
sampling theorem. For a detailed discussion on the sampling 
theorem and associated algorithm, we refer the reader to [9].

samples y [n] =  F x (x (nT )).
• We provide a simple recovery algorithm that is backwards 

compatible with known DoA estimation and beamforming 
methods. The recovery guarantees are agnostic to A.

B. Advantages o f DoA Estimation with Modulo Samples

Compatibility with Known DoA Estimation Techniques.
An appealing feature of our method is its simplicity. Although 
our approach starts with non-linear, modulo samples y [n], 
we show that existing DoA methods can be applied on a 
transformed version of y [n], that is, T (y  [n]). As it will 
be shown, T (y) =  F x (A Ky) is a point-wise, single-shot 
mapping, where A K is the finite difference operator of order 
K . With T, DoA estimation is mathematically guaranteed to 
succeed provided that we choose (T, K ) according to the 
unlimited sampling theorem (cf. Theorem 1 and [9]).

Reduction in Computational Complexity What distinguishes 
this paper from our preceding works [8], [22], [23] is that here, 
(a) we are working with multi-channel measurements and (b) 
DoAs can be directly estimated from the modulo samples; 
there is no need to reconstruct the signal. This results in 
a reduction of both the computational requirements and the 
sampling density.

Compatibility with Beamforming. Compared to 1-bit encod­
ing methods, a distinct advantage of our approach is that we 
can perform beamforming. In fact, we can perform beam­
forming directly on T (y [n]), since A K does not affect the 
space-dimension of the data. Such invariance allows retrieving 
only the unfolded samples from the desired sources instead 
of repeating the whole process on each antenna individually, 
which further reduces the complexity.

II. Problem  Setup

Notation. Continuous functions and discrete sequences are 
represented by x ( t ) , t G R and x[n],n G Z, respectively. 
Matrices and vectors are written in capital and small, boldface 
font, respectively. For a matrix X, we define [X]m,n as the 
entry in the position (m ,n) where we start counting from 
zero. We use X H and X T to denote conjugate-transpose 
and transpose of matrix X, respectively. The covariance of 
a matrix X  is written as R (X) =  X X H. We use ker (X) 
and span (X) to denote the kernel and span of a matrix, 
respectively. Function and sequence spaces are denoted by Lp 
and £p, respectively and the corresponding norms are defined 
by IHIl (r) and IHIr (R). When p ^  to, the norms denote the 
max-norm. A function x bandlimited to maximum frequency 
Q is denoted by x g while x G PWq denotes a function in 
the Paley-Wiener class of bandlimited and square-integrable 
functions, x G n  L2.

A. Data Model
A. Contributions
•  We take a first step towards the formalization of the DoA 

estimation problem based on low-dynamic-range, modulo

We consider the standard setup in sensor array processing 
[1]. Suppose that M  narrow band sources {sm ( t ) } ^ -1 with 
DOAs 0  =  {dm}M=T01, impinge on a uniform linear array

1867

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2021 at 12:24:52 UTC from IEEE Xplore.  Restrictions apply. 



(ULA) with L sensors. The resulting data model for the 1th 
sensor (1 =  0 , . . . ,  L -  1) is written as,

M-1

Xl [n] = J 3  ai sm [n] (2)
m=0

where,
• x l [n] =  x l (nT ), n  =  0 ,1 , . . . ,  N  — 1, is the sampled wave­

form corresponding to the 1th sensor, which can be stacked 
in the matrix X  as [X]ljK =  x l[n].

• al (dm) is the 1th entry of the array steering vector given by,

a (6 m) =  [ 1 ejd^ sin(em) ejdf(L -1 )sin(em) ]T

where the 6m’s are all distinct. The resulting matrix is,

A© =  [ a  (6o) • • • a  (6m - 1) ] • (3)

• sm [n] =  sm (nT ), n  =  0 , . . . ,  N  — 1, are the samples of 
the mth narrowband waveform, which can be stacked in 
the matrix S as [S]mn =  sm [n]. Here, we will assume 
that sm € PWq (Paley-Wiener class), and hence T  < n /H  
according to Shannon’s sampling theorem.

In a compact form, given M  sources, L sensors and N  time- 
samples, the relationship between the matrices X, A© and S 
is given by,

X  =  A© S . (4)

C L x N  c L x M  C M x N

In our work, we aim to recover the unknown DOAs 0  
from modulo measurements. Since the entries of the folding 
operation are complex-valued, the modulo operator M A (•) 
should be interpreted in the following sense,

m a (t) : t € C ^  F \  (^ (t)) +  7f a (9 ( t ) ) ; (5)

The DOA estimation problem boils down to recovering 0  
from point-wise non-linear measurements,

Y  =  M a (X) =  M a (A©S) • (6)

The definition of the folding operator M A in (5) allows us to 
map X  € c LxN to Y  € c LxN . A graphical representation 
of the setup is shown in Fig. 1.

B. Geometry o f the DoA Estimation Problem
Existing techniques for DoA estimation cannot be directly 

applied in this scenario. To give the reader an intuitive under­
standing, consider the geometry of the eigen-decomposition 
and the rank constraint on R (X); the covariance matrix of 
the conventional data samples. It is well known that the eigen- 
decomposition of R (X) takes the form of,

R (X) =  A©R (S) A© =  U A U h . (7)

The diagonal matrix A is at most rank M  (in the absence of 
noise). This property is lost when working with data matrix Y . 
To see this, let us recall the Modulo Decomposition Property 
[9] which allows to write x (t) =  M A (x (t)) +  QA (t) where 
QA € 2AZ is a simple function. In the context of our work,

modulo decomposition implies that the data matrix can be 
decomposed as X  =  Y  +  QX, and hence,

R (Y ) =  R (X ) +  (R  (QX) — ( x q XH +  Q X X H) ) . (8)
' ----------------------------------------- v ----------------------------------------- '

Noise

Consequently, R (Y) can be interpreted as a noisy version 
of R (X) in (7). Therefore, standard techniques can not be 
applied unless a denoising strategy is employed.

III. DOA ESTIMATION FROM M ODULO SAMPLES

A. Intuition and Overview o f the Approach
In this work, starting with sampled data matrix Y , we apply 

a transformation T such that Z =  T (Y) maps to the original 
signal subspace X  but not necessarily to X  itself. Once this 
is possible, we can use existing DoA estimation methods. Our 
approach leverages the idea that higher order differences taken 
over the samples (denoted by A K) and the modulo operator 
M a ( ) commute in a certain sense [9]. For a smooth sequence, 
x [n] =  x (nT ), the application of A K has a shrinking effect 
on the derivative of the same function which is controlled 
by T K. Hence, for a certain choice of sampling rate T  and 
difference order K , it is possible to shrink the amplitudes of a 
sequence arbitrarily. Once the difference sequence is smaller 
than A, the folding operation in (6) has no effect. This is be­
cause for any | |a | |^ ( R) < A, we have that a[n] =  M A (a[n]). 
The net effect is that folding has no impact on the higher order 
differences and hence, starting with modulo measurements, we 
can access the higher order differences of the original sequence 
using T(Y) =  M a (A k  (Y )). Now, since differences are 
linear operators, their action on the subspace of bandlimited 
functions preserves the subspace structure.

B. Recovery Guarantees
Formally, let x (K)(t) denote the K th order derivative of 

x (t) and A Kx [n] be the finite difference of the sequence 
x [n], with (Ax) [n] =  x [n +1] — x [n]. The following lemma 
gives a relation between A Kx and x (K) in terms of the max­
norm.

Lemma 1 (Difference-Derivative Inequality [8], [9]). For any
x(t) € C K (R) n  (R), its samples x[n] =  x (n T ) satisfy,

llA K xllit («) < (Te)K |x (K ) |Lt (R). (9)
Using T  < 1/e allows us to shrink the amplitudes on the 

right hand side of (14). Typically, it is much easier to estimate 
the maximum value of the function than a bound on its 
derivative. To bound the right hand side of (9), we invoke the 
well known Bernstein’s inequality for bandlimited functions;
for aB x € ■8 ^  we hav^  |x (K ) |Lt (R) ^  Q K | x | Lt (R). By 
combining this with (9), we obtain the following bound in [9],

llA x l l r t (R) ^  (THe) l l x l l  Lt  (R). (10)
Let B x > A be a known upper bound on x (t). Choosing 
THe < 1 in (10) ensures (THe)K B x < A, for K  given by

K  >
log A -  log Bx 

log (THe)
(11)
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which is independent of M . Thus, letting T  < 1/Ue,

||A k x | | ^ < A ^  A k x  =  M x (A k x) . (12)

To relate higher order differences of x with the measurements 
y, we use the following proposition [9],

Proposition 1. For any sequence x[n] it holds that

M x  (A k x) =  M x (A k  (Mx (x))) . (13)

In our setup, since the time-domain samples are arranged 
along the row-dimension of L x  N  matrix [X];,n =  x ; (n T ), 
the difference operator acts over each row independently,

[AKX];,„ =  (A Kx;) (n T ) =  [XDk ]l,n (14)

where D k  g R n x (n - k ) is the matrix corresponding to A k  
and D 0 =  I  (identity matrix). Combining (13) and (12), 
we obtain the link between higher order differences and the 
modulo samples,

A k x =  M x (A k y) X D k  =  M x (Y D k ). (15)

We summarize our main result in the following theorem.

Theorem 2 (US-DoA). Let {sm}M—o G Bq be M , bandlim- 
itedfunctions and sm [n] =  sm (n T ), n  =  0 , . . . ,  N  — 1, be the 
samples with sampling rate T . Furthermore, let the modulo 
samples be stacked in the data matrix Y  =  M x (A eS) 
in (6) with A© defined in (3). Provided that the sampling 
rate satisfies the sampling bound, T  < 1/2Ue and for some 
N  > K , choosing,

B x > max ||x ;||L (R) and K  >

results in (15), X D k  =  M x (Y D k ).

Instead of recovering X  from X D k  (higher order differ­
ences), which was the case in previous works on the topic of 
unlimited sampling [8], [22], [23], here we are interested in 
estimating DoAs. To this end, let us denote,

Z =  M x (Y D k ) =  X D k  . (16)

Accordingly, we obtain the eigenvalue decomposition of the 
covariance matrix, R (Z) =  U A U H =  A©R (S) A@, where 
S =  S D k . This shows that the operator A k  preserves 
the array manifold. For subspace based techniques, such as 
MUSIC or ESPRIT the following result has to be considered.

Proposition 2. Let S be an arbitrary, full-rank, matrix, such 
that Sk =  S D k is full rank, and let X k =  A © SD fc define a 
sequence o f matrices. Then, span(R  (X 0)) =  span(R  (X k)).

According to Proposition 2, starting with modulo measure­
ments Y , we can map them to the space spanned by the 
covariance of conventional samples X. This is advantageous 
because existing methods can be readily applied. This results 
in the following recovery algorithm.

Recovery Algorithm
Inputs: Data matrix of modulo samples Y  in (6).

Number of sources M .
An estimate on the upper bound, B x > ||{x;}Lt01 IIL (R). 

Step 1: Compute K  using (11).
Step 2: Compute Z using (16).
Step 3: Evaluate SVD, Z =  U S V H or R (Z ) =  U S 2U H. 
Step 4: Use traditional techniques for DoA estimation. 
Output: 0  =  ^ m C -1  •

In the above recovery method, depending on the DoA 
estimation technique employed, specific constraints over the 
number of sources M , samples N  and array elements L  should 
be considered [1]. For example, for MUSIC and ESPRIT 
algorithms, the requirement is that L > M .

IV. NUMERICAL DEMONSTRATION

In this section, we provide examples of DoA estimation. 
Furthermore, we consider the noisy case which shows that our 
approach is empirically stable in the presence of perturbations.

Noiseless Case We consider M  =  4 transmitted, bandlimited 
signals sm e  Bn which are randomly generated. We use 
N  =  8 with T  =  (2ne)-1 — 1/100. The corresponding DoA 
angles {dm}m=0 are 3, 15, 45 and 87 degrees. We consider 
a ULA with L = 1 1  elements. Inter-element spacing is set to 
half a wavelength. Based on the experimental parameters, we 
construct the ground truth X  and choosing A =  0.2 we obtain 
Y . A row of X  and corresponding Y  is shown in Fig. 2(a). The 
value of B x is assumed to be known. With these parameters, 
we estimate K  using (11). We perform the DoA estimation 
on Z in (16) and X, using the MUSIC algorithm. As shown 
in Fig. 2(b) for a given row, Z is equal to X D K. The MUSIC 
pseudo-spectrum is shown in Fig. 2(c). The results for Z and 
X  are equal up to MATLAB’s numerical precision.

Noisy Case Next, we evaluate our algorithm’s performance 
in the case of noise. To this end, we consider the additive 
white Gaussian noise (AWGN) model. For comparison, we 
add noise to the conventional and modulo samples. As we do 
not use any denoising methods, this experiment serves as an 
empirical test of our algorithm’s stability. We use the same 
experimental parameters as above, but with N  =  800 and 
retrieve the DoAs using the ESPRIT algorithm with M  =  2 
(angles are 3 and 15 degrees). The SNR varies from 0 to 50 
dB. The accuracy of the method is assessed using the MSE 
between the estimates and the ground truth. The experiment is 
averaged over 5000 trials for both noisy versions of X  and Y , 
respectively. The results are shown in Fig. 2(d). As expected, 
for low SNR, our method is unable to work with noisy 
measurements. Nonetheless, as the SNR increases, the method 
reaches a performance comparable to operating directly with 
the unfolded samples. The formal integration of noise into 
US-DoA is left for future research.

V. CONCLUSIONS

In this work, we presented a novel sensing approach for 
DoA estimation that is based on modulo non-linearity. Our 
work can tackle arbitrarily high-dynamic-range signals without 
running into the saturation problem. This is well suited for

log A -  log Bx 
log (TUe)
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Fig. 2: (a) Bandlimited waveform, x i( t) , and corresponding modulo samples yi [n], A =  0.2 and T  =  (2ne)-1 — 1/100. (b) We show that 
x iD k  is the same as ( y iD x ) with K  in (11). (c) MUSIC pseudo-spectrum using the covariance matrix of data X  and (Y D k ).
Both results are equivalent since our pre-processing operator retrieves the original signal subspace. (d) MSE between estimated and real 
DoA using ESPRIT algorithm, in terms of the SNR of the noise, using both X  and (Y D k  ). We can see that, in the low SNR regime,
the pre-processing approach does not perform accurately since (11) does not hold for any value of K .

applications where ambient dynamic range is unknown or near 
field emitter/interferer may cause sensor saturation. The key 
advantages of our method are (a) non-iterative recovery, (b) 
backwards compatibility with known DoA estimation methods 
and (c) preservation of the original, unfolded signal. This 
allows for applications such as beamforming which is not 
possible with other alternatives such as the 1-bit architecture. 
Finally, our approach is based on a new kind of non-linear 
sensing setup, which leads to several interesting research 
questions on both the algorithmic and hardware fronts.
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