
Smooth Strongly Convex Regression
Andrea Simonetto

IBM Research Ireland
Dublin, Ireland

andrea.simonetto@ibm.com

Abstract—Convex regression (CR) is the problem of fitting a
convex function to a finite number of noisy observations of an un-
derlying convex function. CR is important in many domains and
one of its workhorses is the non-parametric least square estimator
(LSE). Currently, LSE delivers only non-smooth non-strongly
convex function estimates. In this paper, leveraging recent results
in convex interpolation, we generalize LSE to smooth strongly
convex regression problems. The resulting algorithm relies on
a convex quadratically constrained quadratic program. We also
propose a parallel implementation, which leverages ADMM, that
lessens the overall computational complexity to a tight Opn2

q for
n observations. Numerical results support our findings.

I. INTRODUCTION

Convex regression (CR) is concerned with fitting a convex
function to a finite number of observations. In particular,
suppose that we are given n noisy observations of a convex
function ϕ : Rd Ñ R as

yi “ ϕpxiq ` εi, i P In :“ t1, . . . , nu, (1)

where εi’s are random variables, while xi P Rd. The objective
of CR is then to estimate the true function ϕ, given the
observations yi’s, in a way in which the estimated function
ϕ̂ is convex.

CR is a particular class of shape-constrained regression
problems, and since its first conception in the 50’s, it has
attracted much attention in various domains, such as statistics,
economics, operations research, signal processing and con-
trol [1]–[3]. In economics, CR has been motivated by the need
for approximating consumers’ utility functions from empirical
data [4], a task which has been recently re-considered in the
context of personalized optimization with user’s feedback [5].

In this paper, we study least squares estimators (LSEs)
for CR. LSEs have some key advantages over many other
estimators proposed in the literature for CR (e.g., constrained
Gaussian processes [6], splines [7], or others [8]). First, LSEs
are non-parametric and hence they do not require any tuning
and avoid the issue of selecting an appropriate estimation
structure. Second, LSEs can be computed by solving a convex
quadratic program. Therefore, at least in theory, they can be
solved very efficiently using interior point methods. Third,
being based on the least squares paradigm, they can be natu-
rally extended to time-varying cases (when the function to be
estimated changes continuously in time) by, e.g., exponential
forgetting coefficients; these cases are becoming more and
more important in the current data streaming era [9].

One of the main theoretic drawback is however that the
class of functions that can be enforced is limited to the general

convex functions, while in many applications one would like to
be able to impose at least smoothness and/or strong convexity.

In this paper, our contributions are as follows,
‚ First, we propose a novel smooth strongly convex CR

algorithm. The resulting estimator has at its heart a convex
quadratically constrained quadratic program, with n ` nd
variables and npn ´ 1q constraints. We also report on its
computational complexity as a function of n. The building
blocks for this novel algorithm are the recent results in smooth
strongly convex interpolation [10], [11].
‚ Second, we propose a decomposition scheme based on

the alternating direction method of multipliers (ADMM) to
lessen the computational complexity and make the method
parallel. The resulting computational complexity per iteration
is then Opn2q which is tight (i.e., no LSE can obtain a lower
computational complexity). The ADMM approach is based
on a properly constructed constraint graph, as well as a dual
formulation of the local sub-problems.

The results presented in this paper generalize LSE to smooth
strongly convex functions, and the non-smooth results can be
re-obtained as a special case1.

II. DEFINITIONS AND PROBLEM STATEMENT

We start by formally defining the functional class of interest.
Given two parameters µ and L satisfying 0 ď µ ă L ď `8,
we consider convex functions satisfying both a smoothness
and a strong convexity condition. Given a convex function
ϕ : Rd Ñ R, we say that the function is L-smooth and µ-
strongly convex, which we denote with Fµ,L, iff the following
two conditions are satisfied:
‚ Inequality 1{L}g1´ g2}2 ď }x1´x2}2 holds @x1,x2 P

Rd and corresponding subgradients g1, g2 P Rd;
‚ Function ϕpxq ´ µ{2}x}22 is convex.

These definitions allow for L to be equal to `8 (i.e., the
non-smooth case). In the case of a finite L, the first condition
implies differentiability of the function. When L “ `8, this
condition becomes vacuous, and the function can be non-
differentiable. The class of generic convex functions simply
corresponds to F0,`8. The case L “ µ can be discarded, as it
only involves simple quadratic functions, that can be estimated
parametrically much more efficiently.

1 Notation. Vectors are indicated with x P Rn, and matrices with
A P Rmˆn. The Euclidean norm is indicated with }x}2, the infinity norm
as }x}8. p¨qᵀ is the transpose operator. Symmetric positive (semi)-definite
matrices of dimension n are indicated as A P Sn`pA P Sn``q. For convex
functions ϕ : Rn Ñ R, we indicate with Bϕpxq their subgradient at point x
and with ϕ‹ their convex conjugate. Op¨q is the standard big-O notation.

ar
X

iv
:2

00
3.

00
77

1v
1

 [
cs

.I
T

]
 2

 M
ar

 2
02

0

The problem we are interested in solving can be then
formalized by using the empirical `2 norm as:

ϕ̂n P argmin
ψPFµ,L

!

ÿ

iPIn

pyi ´ ψpxiqq
2
)

. (2)

As we will see, the solution of (2) will consist of two parts:
(i) the solution of a finite-dimensional optimization problem
defined on the observation set, and (ii) an interpolating func-
tion which maintains the functional class also in all the other
points of the domain. In this respect, we define the notion of
Fµ,L-interpolation as follows.

Definition 1: The set tpxi, gi, fiquiPIn where xi, gi P Rd
and fi P R for all i P In is Fµ,L-interpolable iff there exists
a function ϕ P Fµ,L, ϕ : Rd Ñ R, such that gi P Bϕpxiq and
fi “ ϕpxiq for all i P In. ˛

III. SHAPE-CONSTRAINED LEAST-SQUARES

A. State of the art

The infinite dimensional optimization problem in (2) can
be reduced to a finite dimensional one for the case F0,`8 as
follows. Let fi “ ϕnpxiq, for i P In and define the vector
f “ rf1, . . . , fns

ᵀ P Rn. Let gi “ Bϕnpxiq, and define the
vector g “ rgᵀ1 , . . . , g

ᵀ
ns

ᵀ P Rnd. We can now rewrite the
optimization problem (2) for F0,`8 on the observation set as
the following convex quadratic program (QP):

minimize
fPRn, gPRnd

ÿ

iPIn

pyi ´ fiq
2 (3a)

subject to : fj ` g
ᵀ
j pxi ´ xjq ď fi, @i, j P In. (3b)

Problem (3) is a convex QP with n ` nd variables and
npn ´ 1q constraints (after removing the trivial i “ j ones).
Constraint (3b) imposes convexity on the observation points.

A solution of (3), that can be labelled as tpf˚i , g
˚
i quiPIn , is

F0,`8-interpolable by construction. In fact, once the solution
is retrieved, an allowed estimator/interpolating function for
function ϕ at point x P Rd is given by

ϕ̂npxq “ max
iPIn

f˚i ` g
˚,ᵀ
i px´ xiq

(

. (4)

Two comments are in order at this point:
‚ First, estimator (4) is non-smooth and non-strongly convex

in general. While ad-hoc smoothing techniques do exist [12],
one incurs a daunting trade-off between smoothing quality (in
terms of low Lipschitz constant L) and estimation quality
(in terms of small error ε w.r.t. the non-smooth solution).
Typically, if one wants to retrieve functions of the class Fµ,L
with a low L, one has to expect poor estimation quality ε.
‚ Second, even though problem (3) is a convex QP and

one can use off-the-shelf solvers to solve it efficiently (e.g.,
OSQP [13], or ECOS [14]), the number of shape constraints is
still Opn2q. In addition, its computational complexity grows
at least as Opn3pd ` 1q3q, making practically hard to solve
problems with n ą 200 and even small d. However, thanks
to the decomposable structure of problem (3) one can resort
to first-order methods [3], [12], [15] whose computational
complexity scales as Opn2q per iteration, to tackle problems up

to n „ Op1000q in dimensions that can go up to d “ 200 for
the very recent [15]. Note that a computational complexity of
Opn2q is the least one can expect, given the Opn2q constraints.
Finally, partitioning methods have also been advocated [16]
but not explored here.

B. Smooth strongly convex regression

In this paper, we propose a new set of constraints (instead
of (3b)) together with an interpolation procedure for ϕ̂npxq to
enforce smoothness and strong convexity automatically. We
use and adapt results from [10], [11] for this purpose. The
basic idea is that smoothness and strong convexity interchange
via the procedure of convex conjugation. While we leave the
technical details to the above mentioned papers, we can cite
the following interpolability results.

Theorem 1: (Fµ,L-interpolability) [10, Theorem 4] The set
tpxi, gi, fiquiPIn is Fµ,L-interpolable iff the following set of
conditions holds for every pair of indices i, j P In:

fi ´ fj ´ g
ᵀ
j pxi ´ xjq ě

1

2p1´ µ{Lq

ˆ

1

L
}gi ´ gj}

2
2 ` µ}xi ´ xj}

2
2

´2
µ

L
pgj ´ giq

ᵀpxj ´ xiq
¯

. (5)

With this in place, we are ready to modify the constraint
set (3b) to accommodate ϕ P Fµ,L. In particular, to solve (2)
for a ϕ P Fµ,L, we can leverage the convex problem:

minimize
fPRn, gPRnd

ÿ

iPIn

pyi ´ fiq
2 (6a)

subject to : (5), @i, j P In. (6b)

This is a convex quadratically constrained quadratic problem
(QCQP), a special case of a second-order conic program [17].
Once a solution tpf˚i , g

˚
i quiPIn is found, the following theorem

describe an allowed estimation/interpolation strategy.

Theorem 2: For any set tpxi, g˚i , f
˚
i quiPIn that is Fµ,L-

interpolable, an allowed interpolating function is

ϕ̂npxq “ convppipxqq `
µ

2
}x}22 (7)

where

pipxq :“
L´ µ

2
}x´ xi}

2
2 ` pg

˚
i ´ µxiq

ᵀx`

´ g˚,ᵀi xi ` f
˚
i ` µ{2}xi}

2
2, (8)

and where convp¨q indicates the convex hull.

Proof: See Appendix A. �

Problem (6) together with the interpolation strategy (7) yield
the promised smooth strongly convex estimator for function ϕ.
If we set µ “ 0 and L “ `8, we retrieve the non-smooth
estimator. For µ “ 0, L ă `8, we obtain a non-strongly
convex smooth estimator, while for µ ą 0 and L “ `8 a
non-smooth strongly convex one.

Problem (6) is a QCQP in n+nd variables and npn-1q
constraints, which can be solved with off-the-shelf convex

solvers, e.g., ECOS [14], or MOSEK. Since the computational
complexity grows at least as Opn3pd` 1q3q, similar practical
limitations than the non-smooth estimator apply here. We will
show how to overcome them by resorting to ADMM next.

C. Parallel implementation

Since the computational complexity of (6) could be pro-
hibitive for practical applications, we move now to understand
how one can decompose the problem into smaller parts and
reduce the overall complexity. Strategies to use first-order
methods (proximal methods and ADMM) on the quadratic
problem (3) for non-smooth convex functions have been
reported in [3], [12], [15]. In the case of (3), the problem
is separable in both cost and constraints (once dualized) and
a decomposition strategy is rather direct. For the case of (6)
however, each constraint couples the variables gi and gj due
to the quadratic term, and a decomposition is not immediate.
We consider here a novel edge-based ADMM decomposition.

Consider the set of constraints of type (5) for all i, j P
In and define the constraint graph, as a directed graph G “

pV,Eq, whose vertices are the nodes i P In, and edges are
all the combinations of i, j: E “ tpi, jq|i P In, j P In, i ‰
ju. The cardinality of E is |E| “ npn ´ 1q. For each edge
e P E, consider its two nodes, say i and j, and define the
edge variables ηe,i “ rfei , g

e,ᵀ
i sᵀ, ηe,j “ rfej , g

e,ᵀ
j sᵀ, as well

as ξe “ rη
ᵀ
e,i,η

ᵀ
e,js

ᵀ P R2p1`dq. In this context, each directed
edge has its own functional and derivative variables.

We use the notation i „ e to indicate that node i is one of
the two vertices of edge e, while we explicitly write epiÑ jq
to indicate that edge e is the directed edge with i as source
node and j as sink node. For ease of representation, we also
define the local constraint,

CepiÑjq :“

fei ´ f
e
j ´ g

e,ᵀ
j pxi ´ xjq ě

1

2p1´ µ{Lq

ˆ

1

L
}gei ´ g

e
j }

2
2 ` µ}xi ´ xj}

2
2

´2
µ

L
pgej ´ g

e
i q

ᵀpxj ´ xiq
¯)

. (9)

We now split problem (6) at the edges, so that each variable
ηᵀ
e,i containing node i, is different for each edge e having

node i has one of its vertices. Then we enforce equality of
all the node variables via the supporting vector zi P R1`d for
each i, z “ rzᵀ1 , . . . ,z

ᵀ
ns

ᵀ P Rn`nd. With this philosophy,
problem (6) can be rewritten in the equivalent form:

minimize
ξPR2|E|p1`dq, zPRn`nd

1

2n

ÿ

ePE

ÿ

i„e

pyi ´ f
e
i q

2 (10a)

subject to : CepiÑjq, @e P E, (10b)
ηe,i “ zi, @e P E, i „ e. (10c)

It is key that the constraint CepiÑjq is present only once for
each directed edge.

The above problem can now be tackled with ADMM. We
leave the derivations out, since standard, and report only the
final result. Start with some initialization for the auxiliary

variable z and initialize the scaled dual variables of the con-
straints (10c) as λ “ r. . . ,λᵀ

e,i,λ
ᵀ
e,j , . . .s

ᵀ P R2|E|p1`dq “ 0.
Set the penalization ρ ą 0. Then at each step,

1) Solve the edge QCQP for each edge e P E:

rη`,ᵀe,i ,η
`,ᵀ
e,j s

ᵀ “ ξ`e “ argmin
ξePCepiÑjq

! 1

2n

ÿ

i„e

pyi ´ f
e
i q

2`

`
ÿ

i„e

ρ

2
}ηe,i ´ zi ` λe,i}

2
2 ,

)

(11)

2) Update the zi variables for each node i P V :

z`i “
1

2n

ÿ

e|i„e

η`e,i (12)

3) Update the λe variables @e P E, and node i „ e:

λ`e,i “ λe,i ` pη
`
e,i ´ z

`
i q (13)

4) Set ξe “ ξ`e for all e P E, zi “ z`i for all i P V , and
λe,i “ λ

`
e,i, for all e P E, i „ e, and go to 1).

Convergence of the above procedure to a minimizer of
the original problem (6) is assured by the standard ADMM
convergence results [18]. In practice, one stops the ADMM
iterations after a specified error criterion has been met, or
a number of iterations has been reached. In this case, we
consider as approximate solution to our problem, the final z
vector that ADMM yields (we let f̃i be the near-optimal f
values and g̃i be the near-optimal g values) and we use the
approximate interpolating function [see Th. 2]:

ϕ̂npxq “ convpp̃ipxqq `
µ

2
}x}22, (14)

p̃ipxq :“
L´ µ

2
}x´ xi}

2
2 ` pg̃i ´ µxiq

ᵀx`

´ g̃ᵀi xi ` f̃i ` µ{2}xi}
2
2. (15)

Note that function (14) is still a L-smooth µ-strongly convex
function by construction, just the ADMM approximate solu-
tion z is only approximately Fµ,L-interpolable, which means
that f̃i « ϕ̂npxiq and g̃i « Bϕ̂npxiq instead of equality
(meaning that function (14) is only approximately minimizing
the LS metric). In practice, we notice that this approximation
delivers good feasible results for small errors.

D. Solving the local dual

Solving (11) in the primal form is still too computational
complex (especially if it has to be done for each edge for each
iteration of the ADMM algorithm). However, since there is
only one scalar constraint, the dual is mono-dimensional and
easier to solve with a few iterations of a projected Newton’s
method. To do this, we write (11) in the standard form:

minimize
ξePR2p1`dq

ξᵀeP0ξe ` q
ᵀ
0ξe ` r0 (16a)

subject to : ξᵀeP1ξe ` q
ᵀ
1ξe ` r1 ď 0, (16b)

where P0 P S2pd`1q
` , P1 P S2pd`1q

`` , q0 P R2pd`1q, q1 P
R2pd`1q, r0 P R, and r1 P R are properly defined matrices,

vectors, and scalars to match (16) to the original (11). Define
the Lagrangian function

Lpνq :“ ξᵀeP0ξe`q
ᵀ
0ξe`r0`νpξ

ᵀ
eP1ξe`q

ᵀ
1ξe`r1q, (17)

for the dual variable ν ě 0. Note that P0 is positive definite
by construction (due to ρ ą 0), and therefore setting Pν :“
P0 ` νP1, the inverse P´1

ν exists and it is well-defined. Set
also qν :“ q0 ` νq1. The dual problem of (16) is:

maximize
νě0

φpνq :“ ´
1

4
qᵀν P

´1
ν qν ` νr1 ` r0 (18)

whose solution can be found with standard projected Newton’s
method2. Once the dual problem is solved and the unique dual
solution ν˚ is found, the unique primal solution of (16) can
be retrieved as

ξ˚e “ ´
1

2
P´1
ν˚ qν˚ . (19)

Putting things together, the ADMM procedure (1-4) with a
a Newton’s method to solve the mono-dimensional local dual
problems (18) has computational complexity of npn ´ 1q ˆ
Oppd ` 1q3q (where the Oppd ` 1q3q term comes from the
computation of the inverse P´1

ν) and for d ! n, the leading
error is Opn2q.

IV. NUMERICAL EVALUATION

We evaluate the presented algorithms in terms of compu-
tational time and mean square error on a toy problem. The
aim is to evaluate scalability and quality in a simple one-
dimensional setting. A more detailed numerical investigation
is deferred to future research efforts. All the computations are
performed using Python 3.6, on a 2.7 GHz Dual-Core Intel
Core i5 laptop with 8GB of RAM. We use CVXPY [19] for
solving the non-smooth and smooth problems. Internally, the
QPs are solved with OSQP, while the QCQPs with ECOS.

The true generating function is ϕpxq “ x2 over x P r´1, 1s.
Function ϕ is 2-smooth and 2-strongly convex. The observa-
tions are generated by adding noise drawn from N p0, σ2q.

We run (i) the non-smooth problem with QP (3) and
estimator (4); (ii) the L-smooth µ-strongly convex problem
with QCQP (6) and estimator (7); (iii) the edge-based ADMM
to solve the smooth problem with local problems (11) and
approximate estimator (14), with ρ “ 1{n and initial z
specified running a Gaussian process estimator [20], which
offers a computationally cheap smooth (but in general non-
convex) first approximation. For the Gaussian process we use
a square exponential kernel. For the ADMM we solve the local
problems resorting to their duals and employing a projected

2 For the sake of completeness, the gradient of the dual function is

dφ
dν
“ ´

1

2
qᵀ
1P

´1
ν qν `

1

4
qᵀ
νP

´1
ν P1P

´1
ν qν ` r1,

while the Hessian is

d2φ
dν2

“ ´
1

2
qᵀ
1P

´1
ν q1`qᵀ

1P
´1
ν P1P

´1
ν qν´

1

2
qᵀ
νP

´1
ν P1P

´1
ν P1P

´1
ν qν .

0

1

No
n-

sm
oo

th

n = 5 n = 20 n = 80

0

1

Sm
oo

th

1 0 1

0

1

AD
M

M

1 0 1 1 0 1

Fig. 1. Examples of estimation of the convex function ϕpxq “ x2 with n
noisy observations. In continuous blue line the estimated ϕ̂, in dashed orange
line the true function. The observations are indicated with grey dots.

Newton’s method with back-tracking. The stopping criterion
for the ADMM has been selected as

ε “ maxt}rη`e,i ´ z
`
i sePE,i„e}8, }z

` ´ z}8u. (20)

In Figure 1, we report the three methods (non-smooth,
smooth, and ADMM) for the task of estimating the given
function ϕpxq with an increasing amount of observations. Here
the observation noise standard deviation is set to σ “ 0.2,
while ε “ 0.01. We also set µ “ 1 and L “ 5. We display
the estimated function ϕ̂pxq with a continuous blue line, while
the true function is a dashed orange line. Using grey dots, we
represents the observations. As we notice, non-smooth and
smooth estimators achieve the desired estimation task with
higher accuracy the more observations are present. ADMM
also does well (even with a moderate error ε).

We run simulations for different n’s, considering σ “ 0.1,
and two versions of ADMM, one with ε1 “ 0.03 and the other
with ε2 “ 0.01. (All the other parameters have been left the
same as the ones in Figure 1). All the results are averaged
over 10 realizations of the observations for the centralized
problems, and 25 for the parallel methods (which are more
dependent on the realization for the number of iterations).

Figure 2 represents the computational times of the various
methods. As we see, the smooth method is the slowest one (as
n increases), as expected. The ADMM methods run slower
than the other methods at the beginning due to the non-
accurate initialization (and therefore due to the need for more
iterations to reach the specified stopping criterion), while as n
increases, they run the fastest (since the initialization becomes
better and better).

Figure 3 represents an error metric defined as

Eϕ̂n “
1

ns

ÿ

sPIs

pϕ̂npysq ´ ϕpysqq
2 (21)

This metric is defined over a finer equi-spaced sampling
ys, s “ t1, . . . , nsu “: Is, over r´1, 1s with ns “ 1000. The

10 20 40 70 100 150 200 300 400
Number of data points n

.1 s

1 s

10 s

1 min

10 min

1h

10h

Co
m

pu
ta

tio
na

l t
im

e

O(n
3)

O(n2)

Non-smooth regression
Smooth regression
ADMM tol 1
ADMM tol 2

Fig. 2. Computational time for the different methods varying n. The dotted
lines indicate the Opn2q and Opn3q growth.

10 20 40 70 100 150 200 300 400
Number of data points n

10 4

10 3

10 2

Er
ro

r m
et

ric O(n 2/5)

Non-smooth regression
Smooth regression
ADMM tol 1
ADMM tol 2

Fig. 3. Mean square error metric for the estimator ϕ̂n for the different meth-
ods varying n (cf. (21)). The dotted line indicates the theoretical Opn´2{5q

convergence rate for the mean square error metric on the observation points.

idea is to capture the error in the estimator ϕ̂n, rather than just
the mean square error on the observation points. As we see and
expected, the smooth estimator is better than the non-smooth
one. ADMM delivers estimates of comparable accuracy than
the smooth one. In the figure, we also display an Opn´2{5q

line, which is the typical convergence rate of non-parametric
LSE for d “ 1 [12], [21]–[23], in the mean-square-error-on-
the-observation-points sense.

What is interesting here is that the metric Eϕ̂n is built on
the estimated ϕ̂n which for ADMM is the approximate (14).
Because of this, the ADMM’s estimator can be better than the
smooth one (especially in low observation settings) This is per
se quite interesting and will be further explored in the future.

V. CONCLUSION

We have proposed a method to perform smooth strongly
convex regression in a non-parametric least squares sense.
The method relies on the solution of a convex quadratically

constrained quadratic program. We have discussed computa-
tional complexity and offered a first-order alternative based on
ADMM to lessen the computational load to a tight Opn2q for
n noisy observations of the true function.

APPENDIX

A. Proof of Theorem 2

The theorem follows from the discussion in [10, Remark 2]
with some extra computations. For the sake of completeness,
we report it here. In particular, take any set tpx̃i, g̃i, f̃iquiPIn .
If this set is F1{pL´µq,8-interpolable, then an allowed inter-
polating function is [10, Remark 2]:

hpx̃q “ max
i
thipx̃qu,

with

hipx̃q “ f̃i ` g̃
ᵀ
i px̃´ x̃iq `

1

2pL´ µq
}x̃´ x̃i}

2
2. (22)

As in [10, Remark 2] by convex conjugation and curvature
addition, an Fµ,L interpolating function of tpxi, gi, fiquiPIn
is:

ϕ̂npxq “ convph‹i pxqq `
µ

2
}x}22. (23)

Computing h‹i pxq can be done in the standard way,

h‹i pxq “ sup
x̃
txᵀx̃´ hipx̃qu “

sup
x̃
txᵀx̃´ pf̃i ` g̃

ᵀ
i px̃´ x̃iq `

1

2pL´ µq
}x̃´ x̃i}

2
2qu.

(24)

For the inner optimization problem (sup), by first-order opti-
mality conditions,

´x`g̃i`
1

pL´ µq
px̃´x̃iq “ 0 ðñ x̃ “ x̃i`pL´µqpx´g̃iq,

(25)
which substituted back into (24) yields

h‹i pxq “
L´ µ

2
}x´ g̃i}

2
2 ` x

ᵀx̃i ´ f̃i. (26)

From [10, Theorem 4(c)] follows that

tpx̃i, g̃i, f̃iquiPIn “ tpgi´µxi,xi,x
ᵀ
i gi´fi´µ{2}xi}

2
2quiPIn .

Operating the substitutions in (26) and calling pipxq :“ h‹i pxq,
the thesis follows. �

REFERENCES

[1] R. J. Samworth and B. Sen, “Editorial: Nonparametric Inference Under
Shape Constraints,” Statistical Science, vol. 33, no. 4, 2018.

[2] P. Groeneboom, G. Jongbloed, and J. A. Wellner, “Estimation of
a Convex Function: Characterizations and Asymptotic Theory,” The
Annals of Statistics, vol. 29, no. 6, pp. 1653 – 1698, 2001.

[3] N. S. Aybat and Z. Wang, “A Parallel Method for Large Scale Con-
vex Regression Problems,” in Proceedings of the IEEE Conference in
Decision and Control, 2014.

[4] R. F. Meyer and J. W. Pratt, “The Consistent Assessment and Fairing
of Preference Functions,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 3, pp. 270 – 278, 1968.

[5] A. Simonetto, E. Dall’Anese, J. Monteil, and A. Bernstein, “Personalized
Optimization with User’s Feedback,” arXiv: 1905.00775, 2019.

[6] X. Wang and J. O. Berger, “Estimating Shape Constrained Functions
Using Gaussian Processes,” SIAM/ASA Journal on Uncertainty Quan-
tification, vol. 4, no. 1, pp. 1 – 25, 2016.

[7] A. L. Dontchev, H. Qi, and L. Qi, “Quadratic Convergence of New-
ton’s Method for Convex Interpolation and Smoothing,” Constructive
Approximation, vol. 19, pp. 123 – 143, 2003.

[8] M. Birke and H. Dette, “Estimating a Convex Function in Nonparametric
Regression,” Scandinavian Journal of Statistics, vol. 34, no. 2, pp. 384
– 404, 2007.

[9] E. Dall’Anese, A. Simonetto, S. Becker, and L. Madden, “Optimization
and Learning with Information Streams: Time-varying Algorithms and
Applications,” Signal Processing Magazine (to appear), May 2020.

[10] A. Taylor, J. Hendrickx, and F. Glineur, “Smooth Strongly Convex In-
terpolation and Exact Worst-case Performance of First-order Methods,”
Mathematical Programming, vol. 161, no. 1, pp. 307 – 345, 2017.

[11] A. Taylor, “Convex Interpolation and Performance Estimation of First-
order Methods for Convex Optimization,” Ph.D. dissertation, Université
catholique Louvain, Belgium, January 2017.

[12] R. Mazumder, A. Choudhury, G. Iyengar, and B. Sen, “A Computa-
tional Framework for Multivariate Convex Regression and Its Variants,”
Journal of the American Statistical Association, vol. 114, no. 525, pp.
318–331, 2019.

[13] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” arXiv: 1711.08013,
2017.

[14] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP Solver for
Embedded Systems,” in Proceedings of the ECC, 2013.

[15] M. Lin, D. Sun, and K.-C. Toh, “Efficient algorithms for multivariate
shape-constrained convex regression problems,” arXiv: 2002.11410,
2020.

[16] L. A. Hannah and D. B. Dunson, “Multivariate Convex Regression with
Adaptive Partitioning,” JMLR, vol. 14, pp. 3261 – 3294, 2013.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends® in Machine Learning,
vol. 3, no. 1, pp. 1 – 122, 2011.

[19] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” JMLR, vol. 17, no. 83, 2016.

[20] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, US: The MIT Press, 2006.

[21] E. Seijo and B. Sen, “Nonparametric Least Squares Estimation of a
Multivariate Convex Regression Function,” The Annals of Statistics,
vol. 39, no. 3, pp. 1633 – 1657, 2011.

[22] E. Lim and P. W. Glynn, “Consistency of Multidimensional Convex
Regression,” Operation Research, vol. 60, no. 1, pp. 196 – 208, 2012.

[23] J. Blanchet, P. W. Glynn, J. Yan, and Z. Zhou, “Multivariate Distri-
butionally Robust Convex Regression under Absolute Error Loss,” in
Proceedings of NeurIPS, 2019.

	I Introduction
	II Definitions and problem statement
	III Shape-constrained least-squares
	III-A State of the art
	III-B Smooth strongly convex regression
	III-C Parallel implementation
	III-D Solving the local dual

	IV Numerical evaluation
	V Conclusion
	V-A Proof of Theorem ??

	References

