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Abstract—In the field of array processing, Direction-Of-Arrival
(DOA) estimation of close sources in the presence of modeling
errors is a challenging problem. Indeed, the degradation of
high-resolution methods on such scenario is well known and
documented in the literature. This paper proposes an operational
sparse L0-regularized method as an alternative. In sparse DOA
estimation methods, the determination of the regularization
parameter is a critical point, and it is generally empirically
tuned. We first provide, in the presence of modeling errors, a
theoretical statistical study to estimate the admissible range for
this parameter in the presence of two incoming sources. For close
sources, we therefore show that the admissible range is shortened.
For an operational system, an off-line predetermination of the
regularization parameter is required. We show that its selection
is closely connected to the resolution limit for a given modeling
error. Numerical simulations are presented to demonstrate the
efficiency of the proposed implementation and its superiority in
comparison with high-resolution methods.

Index Terms—DOA estimation, sparse estimation, modeling
errors, close sources

I. INTRODUCTION

In the field of high resolution Direction-Of-Arrival (DOA)
estimation, subspace based methods such as MUSIC provide
superior performances than other conventional techniques as
beamforming or Capon’s method. However, those methods are
still limited for actual systems in the presence of modeling
errors [1]: they have drastic limitations in the case of close
sources or coherent sources. Indeed, performances depend
strongly on the accuracy of the array manifold.

Sparse methods have been used for over one decade in DOA
estimation [2]. The scientific community investigates these
new approaches for its potential performances in challenging
situations. These improvements must be established, or in
other words, the scenarios for which those sparse methods
are superior must be identified. Some authors highlight that
those methods do not require the determination of the number
of sources, or are interesting in case of a single snapshot [3].
We have recently shown in [4] that sparse methods outperform
high-resolution methods in case of highly correlated sources.

In this article, we focus on the interest of sparse estimators
for two close sources in presence of modeling errors. In the
literature, for regularized sparse methods, the choice of the
regularization parameter λ is often left to the user. In this

paper, thanks to a theoretical statistical analysis, we propose
an automatic predetermination of λ based on Nikolova work
[5] extended here to stochastic observations. This strategy is
applied on a Single Measurement Vector (SMV) obtained from
the vectorized covariance matrix assuming that the sources
are independent. Required exact statistics are provided in this
paper for such observation, which moreover presents great
operational interests.

II. SIGNAL MODELING AND PROBLEM FORMULATION

A. Array signal modeling

A noisy mixture of M narrow-band sources is assumed
to impinge an array of N sensors from DOAs θm, m =
1, . . . ,M . Denoting ã(θ) ∈ CN the steering vector of a signal
source in the direction θ, i.e. the array response for this angle,
the signal at the output of the sensors is given by:

x(t) = [x1(t) . . . xN (t)]
T

=

M∑
m=1

ã(θm)sm(t) + n(t), (1)

t = 1 . . .K, where sm(t) is the complex envelope of the mth
source and n(t) ∈ CN is a white noise vector of variance σ2

n.
The directions of the sources θm are assumed to be in a pre-

defined set Ψ = {ψ1, . . . , ψG} resulting from the discretiza-
tion of the field-of-view. Writing Ã = [ã(ψ1), . . . , ã(ψG)], the
output signal can be modeled under the sparse representation
framework as:

x(t) = Ãs(t) + n(t) (2)

where the vector s(t) ∈ CG is sparse with only M non-zero
entries corresponding to the sources signals sm(t).

But in operational systems, the steering vectors ã(ψ) of
the data collection system might be different from the alleged
steering vectors a(ψ) used in the algorithms. Those so-called
modeling errors can result from all kinds of distortions such
as mutual coupling, wide-band sources etc. Let us consider
additive modeling errors, accounted for example for position
errors, expressed as:

Ã = A + E, (3)

with A = [a(ψ1), . . . ,a(ψG)] the considered calibration
matrix and E = [e(ψ1), . . . , e(ψG)] the modeling error matrix.



Let’s write eg = e(ψg). We set aHg ag = N . The error vector
eg is assumed to be Gaussian, circular and independent on
each sensor such that: E

[
ege

H
g

]
= σ2

eIN , E
[
ege

T
g

]
= 0 and

E
[
ege

H
j 6=g

]
= 0, where IN is the identity matrix. In practice,

σe is over estimated to cover all sources of uncertainties.

B. Vectorized covariance matrix model
In this article, the sources are supposed to be independent.

Using the vectorized covariance matrix model allows to reduce
the dimension of the considered observation from a N × K
matrix to an N2 vector. The effect of finite sample errors is
ignored (K → ∞), thus the covariance matrix of the signal
R̃xx = E[x(t)xH(t)] is assumed to be known. We then have:

R̃xx =

M∑
m=1

ã(θm)ãH(θm)γ0,m + σ2
nIN (4)

with γ0,m the power of the mth source. The vectorized
covariance matrix r̃ = vec(R̃xx) is thus of the form

r̃ =

M∑
m=1

ã∗(θm)⊗ ã(θm)γ0,m + σ2
nvec(IN ) (5)

=

M∑
m=1

b̃(θm)γ0,m + σ2
nvec(IN ), (6)

where b̃(θ) = ã∗(θ)⊗ ã(θ), a∗ is the conjugate of a, and ⊗
is the Kronecker product.

Let’s suppose that the power of the noise σ2
n is known.

Defining b̃g = b̃(ψg) and B̃ =
[
b̃1, . . . , b̃G

]
, we consider

the single measurement vector (SMV) observation y ∈ CN2

:

y = r̃− σ2
nvec(IN ) = B̃γ0, (7)

where γ0 ∈ RG is M -sparse, the nonzero components repre-
sent the power of the true incoming sources and their indices
indicate the corresponding directions. In presence of modeling
errors, the matrix B̃ is unknown and the observation y can thus
be expressed as:

y = Bγ0 + w, (8)

where B ∈ CN2×G is the known dictionary whose columns
are bg = a∗g ⊗ ag , ag = a(ψg), and w a noise vector.
From (3), y is Gaussian, with mean denoted µ =̂ E[y], and
the second order statistics Γ =̂ E

[
(y − µ) (y − µ)

H
]

and

C =̂ E
[
(y − µ) (y − µ)

T
]
. Neglecting terms in σ4

e , we have:

µ =

M∑
m=1

a∗m ⊗ amγ0,m + σ2
e

M∑
m=1

γ0,mvec(IN ) (9)

Γ ≈
M∑
m=1

γ20,m
( [

a∗maTm
]
⊗ σ2

eIN + σ2
eIN ⊗

[
amaHm

] )
(10)

C ≈
M∑
m=1

γ20,m

( [
a∗m1

IN ⊗ am, . . . , a
∗
mN

IN ⊗ am
]

(11)

+
[
a∗m1

IN ⊗ am, . . . , a
∗
mN

IN ⊗ am
]T )

σ2
e

C. Problem formulation

The aim of sparse DOA estimation is to find the directions
θm: they correspond to the columns of B associated with
non-zero entries of γ0. We thus have to estimate γ0 ∈ CG
from the observation y ∈ CN2

(8), with G � N2, using
the dictionary B ∈ CN2×G. The problem is underdetermined,
thus the knowledge that γ0 is M -sparse is used, leading to
the following `0-constrained problem:

min
γ
‖Bγ − y‖22, s.t. ‖γ‖0 ≤M, (12)

where the `0 pseudo-norm (usually referred to as `0-norm) is
defined as ‖x‖0 = Card {g ∈ {1, . . . , G} : xg 6= 0}, xg is the
gth components of vector x.

Problem (12) is NP-hard and an alternative is to find a good
approximate solution of the problem under the regularized
form:

min
γ

{
1

2
‖Bγ − y‖22 + λ‖γ‖0

}
. (13)

The regularization parameter λ > 0 plays a decisive role in the
quality of the solutions obtained when solving this problem,
but it is generally empirically tuned.

The goal is to find the best approximate solution of (12)
by minimizing (13) with an automatically tuned parameter λ
that is data independent for stochastics y. Let’s note that, for a
given deterministic observation, Nikolova [5] determined that
problems (12) and (13) are equivalent as long as λ belongs to
a certain interval I depending on y. In the next section, we
extend this work to stochastic observations and apply it to the
previous vectorized covariance matrix model.

III. DETERMINATION OF AN ADMISSIBLE RANGE FOR THE
REGULARIZATION PARAMETER λ

A. Interval I for the equivalence between the constrained and
regularized problems

For a single observation vector y, Nikolova [5] provides a
condition on the regularization parameter λ so that the optimal
solution of the regularized problem (13) is also the solution
of the constrained problem (12) for a given sparsity level M .

Let’s define ck as the optimal value of the least-square
residual for a vector with sparsity k:

ck(y) = inf
{
‖Bγ − y‖22

∣∣ γ ∈ CG and ‖γ‖0 ≤ k
}
.

(14)
The optimal value ck(y) can be computed as :

ck(y) = min
Φk

(c(y,Φk)) (15)

with

c(y,Φk) = yHΠn(Φk)y, (16)
Πn(Φk) = I−Π(Φk), (17)

Π(Φk) = B(Φk)
[
B(Φk)HB(Φk)

]−1
B(Φk)H , (18)

where B(Φk) is the submatrix of B containing only the
steering vectors corresponding to the k angles in the set
Φk = {ϕ1, . . . , ϕk}.



The optimal sets of problems (12) and (13) coincide for a
given observation y if and only if λ−M (y) < λ < λ+M (y) [5]
with:

λ−M (y) = max
k

{
cM (y)− ck(y)

2(k −M)

∣∣∣M < k ≤ N2

}
, (19)

λ+M (y) = min
k

{
ck(y)− cM (y)

2(M − k)

∣∣∣0 ≤ k < M

}
. (20)

For stochastic observations y, the bounds λ−M and λ+M are
also stochastic. The purpose of this paper is to theoretically
study their statistics in presence of modeling errors. In this
article, we will only consider the case M = 2 sources. Thus
we analyze the statistical behavior of λ−2 and λ+2 .

B. Expression of λ−2 and λ+2 for a given observation with
close sources

It is straightforward to see that the sequence ck, k =
1 . . . N2 verifies cN2(y) ≤ · · · ≤ c2(y) ≤ c1(y) ≤ c0(y).
Under weak conditions, it can be shown that:

λ+2 (y) ≈ c1(y)− c2(y)

2
, (21)

and we will assume that:

λ−2 (y) ≈ c2(y)− c3(y)

2
. (22)

Moreover, it is rather easy to derive that, for two sources
incoming from directions θ1 and θ2:

c2(y) ≈ c(y, {θ1, θ2}), (23)
c3(y) ≈ min

ψg 6=θ1,θ2
c(y, {θ1, θ2, ψg}), ψg ∈ Ψ. (24)

Let’s write:

Q−(y, ψ) = c(y, {θ1, θ2})− c(y, {θ1, θ2, ψ}) (25)
= yH (Πn({θ1, θ2})−Πn({θ1, θ2, ψ})) y(26)

Q+(y, ψ) = c(y, ψ)− c(y, {θ1, θ2}) (27)
= yH (Πn(ψ)−Πn({θ1, θ2})) y (28)

Therefore, we have

λ−2 (y) ≈ 1

2
max

ψg 6=θ1,θ2
Q−(y, ψg) (29)

λ+2 (y) ≈ 1

2
min
ψg

Q+(y, ψg) (30)

with ψg ∈ Ψ. We will write Q−g (y) = Q−(y, ψg) and
Q+
g (y) = Q+(y, ψg). In order to study the statistics of λ−2

and λ+2 , we will first study the statistics of Q−g and Q+
g .

C. Distributions of λ+2 and λ−2
Q−g (y) and Q+

g (y) are hermitian quadratic forms in non-
central normal variables. An hermitian quadratic form Q(y) =

yHPy, with y ∼ CN (µ,Γ,C) can be expressed as a real
quadratic form Q(y) = yR

TPRyR with [6]:

yR =
[
<(y)T , =(y)T

]T
, yR ∼ N (µR,ΓR) (31)

µR =
[
<(µ)T , =(µ)T

]T
(32)

ΓR = 1
2

(
<(Γ + C) =(−Γ + C)
=(Γ + C) <(Γ−C)

)
(33)

PR =

(
(P + PT )/2 i(P−PT )/2
i(PT −P)/2 (P + PT )/2

)
(34)

Let’s define sk = Tr((PRΓR)k)+kµR
T (PRΓR)k−1PRµR.

The mean and standard deviation of Q(y) are given by: µQ =
s1, σQ =

√
2s2. Liu et al. [7] propose to approximate the

distribution of a real quadratic form Q(y) by a non-central
chi-square distribution χ2

l (δ), with l the degrees of freedom
number and δ a non-centrality parameter:

Pr (Q(y) > t) ≈ Pr

(
χ2
l (δ)− µχ
σχ

>
t− µQ
σQ

)
, (35)

where µχ = E
{
χ2
l (δ)

}
= l + δ, σχ =

√
var (χ2

l (δ)) =
√

2a
and a =

√
l + 2δ. The non-centrality parameter δ and the

degrees of freedom number l are computed so that the third-
order moments of Q(y) and χ2

l (δ) coincide, and so that the
fourth-order moments are as close as possible. Defining b1 =
s3/s3/22 and b2 = s4/s22, it gives [7]:
• if b21 > b2, δ = b1a

3 − a2 and l = a2 − 2δ with a =

1/
(
b1 −

√
b21 − b2

)
,

• if b21 ≤ b2, δ = 0 and l = 1/b21.
Knowing the distribution of the observation vector y, it is

therefore possible to approximate the distributions of Q−g and
Q+
g as non-central chi-square distributions using (35).
Moreover, the variables Q−g , g = 1 . . . G (and Q+

g ) are
not independent. Let’s suppose that the dependence between
the variables Q−g for g = 1 . . . G can be modeled using
a Gaussian copula with a correlation matrix Σ. Higher-
order moments are omitted. Let’s define the random vector
Q− =

[
Q−1 . . . Q

−
G

]T
. The approximated non-central chi-

square marginal density functions of Q−g are denoted f−g , and
the corresponding marginal cumulative distribution functions
F−g . Thus, the probability density function of Q− is:

fQ−(q) = c(F−1 (q1), . . . , F−G (qG))f−1 (q1) . . . f−G (qG) (36)

where c is the probability density function of the Gaussian
copula c(u1, . . . , uG) = 1√

detΣ
exp

(
− 1

2β
T (Σ−1 − I)β

)
,

βT =
[
Φ−1(u1), . . . ,Φ−1(uG)

]
, and Φ−1 is the inverse

cumulative density function of a standard normal variable. The
ijth components of the correlation matrix Σ are computed
using the following formula for the covariance:

E
[ (
Q−i − E

[
Q−i
]) (

Q−j − E
[
Q−j
]) ]

= Tr [(PiΓ)(PjΓ)]

+ Tr [(PiC)(PjC)∗] + 4µHPiΓPjµ (37)

where Q−k (y) = yHPky with Pk = Πn({θ1, θ2}) −
Πn({θ1, θ2, ψk}) for k = i, j, and y ∼ CN (µ,Γ,C).
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Fig. 1. Top: empirical histograms of λ−2 and λ+2 for σe = 0.2. Middle: RMSE (in degrees) for the different algorithms as a function of the regularization
parameter λ. Bottom: percentage of errors for the same algorithms. Beamwidth = 44°.

The distribution function of λ−2 can then be computed as:

Fλ−
2

(t) = Pr
(
1/2 Q−(y, ψg) < t,∀ψg ∈ {Ψ \ θ1, θ2}

)
.
(38)

However, in practice, we will use an empirical distribution
function F̂λ−

2
obtained from the maximum of samples of Q−

drawn using (36). The approach is similar for Q+ and λ+2 .
Note that obtaining an empirical distribution directly from (14)
(19) and (20) is combinatorial: the previous statistical study
allows to drastically reduce the complexity.

These statistics allow, with high probability, a data in-
dependent determination of an admissible interval I =[
F−1
λ−
2

(1− ε−);F−1
λ+
2

(ε+)
]
. ε− and ε+ are small values adjust-

ing the confidence interval, as long as there is no overlapping
between both statistics.

IV. SIMULATION RESULTS

We consider an Uniform Circular Array (UCA) with N = 7
antennas and radius d = λ0/2, where λ0 is the wavelength.
UCA are well known for its θ invariant performances: for M =
2 sources, we are thus interested in the behavior depending on
the spacing between the two sources.

Iterative Hard Thresholding (IHT) [8] is the most commonly
used algorithm to solve (13), but might only converge to a
local minima of the cost function. Results of IHT alone are
not presented here as in most cases they are not conclusive:
having a correct initialization is fundamental. The recently
developed Continuous Exact-`0 penalty (CEL0) [10] aims to
improve the global convergence of `0-based algorithms and
can be used with a Forward-Backward (FB-CEL0) or an IRL1
algorithm (IRL1-CEL0) to minimize the `0 criterion [11]. In
this article, we propose to combine CEL0 and IHT to use
advantages of both methods. We show that the result of FB-
CEL0 can be used as an initialization to IHT algorithm. We
will use Iterative Soft Thresholding Algorithm (ISTA) [9],
the low-computational method for the minimization of the

convex `1-regularized criterion, as a comparison to `0 based
methods, although sufficient conditions to recover a sparse
signal using `1 instead of `0 are usually too restrictive in
practical applications. Note that in general, our theoretical
analysis on the regularization parameter λ does not apply for
`1 minimization. However, for the settings used in this article,
we will see that the same parameter can be used.

A. Interval for stochastic observations

Empirical distributions of λ−2 and λ+2 are computed as
in (29) and (30) using 3000 numerical samples of Q−2 and
Q+

2 generated from (36) for σe = 0.2. Histograms are
represented on Fig. 1 (top) for three different spacings inside
the main beamwidth (44°). Performances of the algorithms
are presented over 1000 independent trials as a function of
the parameter λ in terms of Root-Mean Square Error (RMSE)
between the estimated directions and the true DOAs (middle),
and the percentage of errors (bottom). The estimation is
considered erroneous if only one source (or none) is detected
or if the bias between an estimated direction and the true DOA
is superior to half a beamwidth. The trial is then excluded from
the RMSE computation. Whenever the percentage of error is
superior to 80%, the RMSE is not represented.

For high spacing (40°), an admissible interval for λ is
clearly visible for all algorithms on Fig. 1(a): the parameter
λ shall not be over the lower limit of λ+2 , but can possibly
take a value under the maximum of λ−2 . Histograms of λ−2
and λ+2 are closer when the sources are closer. When the
histograms start to overlap (just before 20° of spacing), only
IHT with a suitable initialization can provide an interval where
the percentage of errors is almost (but never) null. Results of
FB-CEL0 are not represented: for high spacing, it acts like
IRL1-CEL0, and for lower spacing like ISTA. However, it
allows consistent results in all regimes as an initialization to
IHT. On the contrary, IRL1-CEL0 can not be used to initialize
IHT: the convergence of the algorithm is already too strong.



B. Data independent selection of the regularization parameter
Based on the previous analysis, we propose in this paper to

select λ at the intersection between F̂−1
λ−
2

(0.98) and F̂−1
λ+
2

(0.02),
computed as a function of the spacing |θ2−θ1|, as represented
on Fig. 2. For σe = 0.2, the intersection occurs at λ = 0.92
for |θ2 − θ1| ≈ 20°. We can infer that this choice is attached
to the resolution limit.
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Fig. 2. Upper limit of the histogram of λ−2 and lower limit of the histogram
of λ+2 as a function of the difference |θ2 − θ1| for σe = 0.2 and σe = 0.1.
Intersection define the Pareto front.

The value of σe is never known exactly: in order to establish
the performances of an operational system, an upper bound can
be estimated. If σe turns out to be lower that the estimated
value, the proposed choice of λ will still be valid, as shown
on Fig. 2, as it remains between the bounds of λ−2 and λ+2 .

C. Performances for the selected λ
RMSE and percentage of errors for the selected λ are

compared to the performances of MUSIC. Results are rep-
resented on Fig. 3 for σe = 0.2, and on Fig. 4 for σe = 0.1.
IHT algorithm initialized by ISTA or FB-CEL0 outperforms
the other methods in terms of resolution limit, but FB-CEL0
initialization provides better performances regarding RMSE.
Resolution limit with the proposed method is 20° for σe = 0.2
and 17° for σe = 0.1, as expected from Fig. 2 for λ = 0.92,
whereas it is only 35° and 26° with MUSIC. Compared meth-
ods have analogue performances for highly spaced sources.
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Fig. 3. RMSE in degrees between the estimated and true DOAs, and
percentage of errors as a function of |θ2 − θ1|, for σe = 0.2 and λ = 0.92.
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Fig. 4. RMSE in degrees between the estimated and true DOAs, and
percentage of errors as a function of |θ2 − θ1|, for σe = 0.1 and λ = 0.92.

V. CONCLUSION

This work focuses on `0-sparse DOA estimation for close
sources in presence of modeling errors under a regularized
formulation. A data independent determination of an admissi-
ble range for the regularization parameter λ is provided. An
operational strategy consists in selecting the value of λ on
the Pareto front. It is applied on the vectorized covariance
matrix for which the statistics have been obtained in presence
of modeling errors. For close sources, simulations highlight the
superiority of the proposed `0 regularization implementation
methods in comparison with `1 and MUSIC methods.
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