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Abstract—We consider the scenario of finding the transfer
function of an aberrating layer in front of an ultrasound array.
We are interested in blindly estimating this transfer function
without prior knowledge of the unknown ultrasound sources or
ultrasound contrast image. The algorithm gives an exact solution
if the matrix representing the aberration layer’s transfer function
is full rank, up to a scaling and reordering of its columns,
which has to be resolved using some prior knowledge of the
matrix structure. We provide conditions for the robustness of
blind calibration in noise. Numerical simulations show that the
method becomes more robust for shorter wavelengths, as the
transfer function matrices then tend to be less ill-conditioned.
Image reconstruction from simulated data using the k-Wave
toolbox show that a well calibrated model removes some of the
distortions introduced by an uncalibrated model, and improves
the resolution for some of the sources.

I. INTRODUCTION

In this contribution we consider the scenario of an aberrating
layer in front of an ultrasound (US) array, as depicted in Fig.
1. In medical ultrasound imaging, such layers could represent
the skin and fat layers to which the ultrasound probe is pressed
to image internal organs. Furthermore, there is typically a
small layer to match the impedance of the US probe and
human skin, which causes some phase changes across the
array. Another example is the human skull, which distorts
ultrasound waves too strongly to use the resulting pulse-
echo data to reconstruct an image of the brain with current
imaging techniques. Recently, we have also investigated the
use of so called ‘coding masks’, thin random phase masks, to
reconstruct ultrasound images with a single US element. To
successfully image using a coding mask, precise calibration is
required but the current method measures the response of each
pixel individually, which is time consuming. In all these cases,
we are interested in estimating the effect of the aforementioned
layers to incorporate it into the image reconstruction process.

A straightforward way of solving this problem would be to
place sources or reflectors in known positions of the probe’s
field of view (FOV), and then adjust our model so as to
match the expected response for that particular source to the
measured response. Needless to say, this approach becomes
problematic when we desire to adjust our ultrasound model
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Fig. 1: An aberration layer distorts incident wavefields, leading to incorrect
estimation of the acoustic contrast image. We are interested in estimating the
transfer function from the virtual array just before the aberration layer to the
real array.

for the human skull or the skin, since this would require us to
place a multitude of sources inside the patient’s skull or body.
Moreover, such methods may be prone to positioning errors
of such sources as well. Ideally, then, we would use a ‘blind’
calibration procedure that relies on some other principle to
correct layer aberrations.

In this paper, we generalize all problems above using the
model as visualized in Fig. 1. We define a ‘virtual’ array, just
in front of the aberration layer, and assume there is a linear
transfer function from each point on the virtual array to each
other point on the real array. The US field in the real array is
then a linear combination of the field incident on the virtual
array. We furthermore assume that the remainder of the FOV
is a homogeneous medium, with only small inhomogeneities
in the medium formed by the US contrast image that we want
to reconstruct.

The problem of correcting for phase changes due to a phase
screen in front of an US array has been studied before, using
both blind and non-blind techniques. However, most of the
studies focus on thin phase layers which cause a time delay
for each point on the array (e.g., [1]–[3]). These methods only
consider a time shift caused per element of the array, but do
not consider situations where each sensor in the array may be
influenced by multiple points on the virtual array.
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Focusing ultrasound waves through the skull has
been achieved using time-reversal techniques [4], and
spatiotemporal filter design [5]. Unfortunately, these methods
typically require one to first measure waves inside the brain.
An interesting alternative approach is one where two arrays
are placed opposite to one another on each side of the skull
[6], avoiding the need for measurements inside the skull, but
requiring two arrays. Furthermore, in [6] it is assumed that
one of the skull walls can be approximated as a thin phase
layer, which is not necessarily the case.

1) Notation: We will represent a vector x in lower-case
bold, and a matrix X in upper-case bold. The operator ‖.‖F
represents the Frobenius norm, ? represents the Khatri-Rao
product, and ∗ denotes a temporal convolution. The notation
X† represents the Moore-Penrose pseudo-inverse of X. Fi-
nally, diag(c) stands for a diagonal matrix with the vector c
on its diagonal.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We assume that a linear array is placed in a homogeneous
medium with linear propagation of US waves. We can either
consider the case of a set of sources transmitting towards the
array, or that a separate transmitter illuminates the FOV, where
inhomogeneities (acoustic contrast) in the acoustic properties
of the propagation medium scatter echoes towards the array.
In the latter case, each contrast then acts as an independent
source. If the contrasts are sufficiently weak, higher order
reflections between reflectors can be ignored according to
the Born approximation (see e.g. [7], [8]), which is typically
used in ultrasound imaging. In that case, all measurements
are linear w.r.t. sources and/or ultrasound contrast images, and
we can use the following convolutional formulation to model
measurements [9]–[11]. Denote the number of array elements
by M , and the measurement of element m by ym(t). We divide
the FOV in N small pixels, and assume that each from K
sources transmits a signal sk(t). Our model then becomes:

ym(t) =

N∑
n=1

xn g
(r)
m,n(t) ∗

(
K∑

k=1

g
(t)
n,k(t) ∗ sk(t)

)
, (1)

where g(r)m,n(t) is the Green’s function for a wave travelling
from pixel n towards array element m, and xn is the scatter in-
tensity coefficient of pixel n. The signal g(t)n,k(t) is the Green’s
function from source k to pixel n. Here, the superscript (r)

refers to the receive Green’s function (from a pixel to an array
element), and the superscript (t) refers to the transmit Green’s
function.

Typically, the transfer functions and excitation signals are
known beforehand, and the goal then is to estimate xn from
ym. Since the ym’s are completely linear w.r.t. the xn’s, we
can stack the measurements of all sensors for a single temporal
frequency bin l into a single vector yl ∈ CM , and write:

yl = Alx, (2)

where x ∈ RN contains the coefficients xn, and Al ∈ CM×N

can be constructed using (1). This equation is typically used
for solving the inverse imaging problem, i.e., finding the
contrast image x from measurements yl, and is the equation
we will try to solve for obtaining an image in the results
section.

For the results in this paper we will mostly focus on
calibration from many different transmit signals sk(t), using
the equation below. From (1), we can express measurements
as a linear function of the sources:

yl = G
(r)
l diag(x)G(t)

l sl

= Glsl, (3)

where Gl , G
(r)
l diag(x)G(t)

l has dimensions M × K, and
sl ∈ CK . If, instead of contrast sources scattering towards
the array, there are K sources directly transmitting towards
the array themselves, we set G

(t)
l = I, and x will be an

all-zero vector with ones for the pixels where a transmitting
source is active. The latter will be the case for the simulations
in this paper. For the remainder of this paper, we drop the
frequency subscript l, and we assume calibration is done on
each frequency bin separately.

In the case of the presence of an aberration layer, there
is an additional transfer function in the frequency domain
from the ultrasound field just before the aberration layer to
the ultrasound field in the positions of the array. That is, we
introduce a virtual array just before the aberration layer, and
assume there is a linear transfer function from each virtual
array element to each element on the real array (Fig. 1). Hence,
we can express the measurements y as

y = HGs, (4)

where H ∈ CM×M describes the linear mapping from US
fields in the virtual array to the real array, for a single temporal
frequency. Different from the original inverse imaging prob-
lem, the problem addressed in this paper is that of estimating
H using equation (4) without knowledge of either s or x.

III. CALIBRATION ALGORITHM

We start by trying to estimate H based on (4). Assume
that P transmit events are used, using a K-element transmit
array. We can stack the transmitted signals {s(p) ∈ CK}, p =
1, . . . , P in a transmit matrix S = [s(1) s(2) . . . s(P )], and
denote our first set of measurements as

Y1 = HGS, (5)

where Y1 ∈ CM×P .
Next, we assume that a second set of measurements Y2

is obtained in a similar way, using the same image x, and
the same transmit sequences S, but with a thin phase layer
just in front of the virtual array. The thin phase layer causes
a phase shift in the frequency domain on each point of the
virtual array, so its effect can be modeled as:

Y2 = HΘGS, (6)
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where Θ = diag(θ), with θ ∈ CM being the phase shifts of
the thin phase layer. Such layers can be implemented using
‘kinoforms’ [12], [13], i.e., thin layers with a different speed
of sound which cause a different time delay for each point on
its surface by spatially varying the layer’s thickness.

The basic idea of the calibration algorithm is to combine
Y1 and Y2 as follows. First, Y2 is projected onto Y1:

Z = Y2Y
†
1

= HΘGS(GS)†H−1

= HΘH−1. (7)

for which we require that H is invertible, and that GS is full
row-rank, so that GS(GS)† = I.

This way, we obtain the matrix Z which no longer depends
on x or s. Moreover, the matrix Z has an eigendecomposition
with eigenvectors H and eigenvalues θ. The aberration matrix
can now be found using an eigendecomposition, without any
prior knowledge of θ, provided that the eigendecomposition
is unique. This can be ensured through the design of the
thin phase layer, by making each delay in θ unique. Through
these steps, we have obtained the matrix H without any prior
knowledge of the transmit codes s or the matrix G. Note that
this technique would also have worked with many contrast
images, using y = HAx from (2). In that case, GS in (7)
would be replaced by AX and we would obtain Z as long as
AX is full row-rank.

For the algorithm to be robust to noise, it is required that
the matrix Y1 is well-conditioned, which in turn depends on
H, G and S to be well-conditioned (and full-rank). If Y1

is ill-conditioned, even small amounts of noise in Y2 can be
amplified by the small singular values of Y1, resulting in a
bad estimate of Z.

This technique exploits a similar data structure as the
one used in the well known ESPRIT algorithm [14]. Both
ESPRIT and our method assume that two measurements are
available, which are related by a diagonal matrix. In contrast
to the ESPRIT algorithm, however, we are not interested
in estimating the values on the diagonal of Θ, but in the
eigenvector matrix H. From a different point of view, (7) is the
solution for Z for solving the equation ZY1 = Y2. Thus, by
computing the eigendecomposition of Z, we are performing a
dynamic mode decomposition [15] on the data Y1 and Y2 to
obtain H and θ.

A. Uniqueness

Since eigendecompositions are unique up to a reordering
and scaling of the columns of H, the order and scaling of
the columns of the eigenvectors obtained from (7) are also
ambiguous. To find the correct ordering, we assume that
θ is ordered in a known manner. For example, if θm =
exp (i2πm/M), m = 1, . . . ,M , we may have the prior
knowledge that {θm} are ordered by a linearly increasing
phase component.

The scaling of each eigenvector of Z can be resolved
according to various principles, but is very dependent on the
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Fig. 2: An example of a typical H matrix of the random aberration layer in
Fig. 3 for a temporal frequency of 5 MHz.

aberration layer being studied. For example, a class of similar
layers could be studied by simulations to find a parameterized
common basis for the corresponding class of matrices. In the
results section of this contribution, we focus on random aber-
ration layers. We empirically found that the transfer function
matrices of such layers have a strong Toeplitz structure per
frequency (see Fig. 2 for a typical matrix of this class). Based
on this prior knowledge, we will resolve the scaling issue by
first defining a basis for the set of matrices a constant diagonal
and constant subdiagonals, Bl ∈ CM×M , l = 1, . . . , 2M−1.
We then try to minimize the Frobenius norm between this set
of matrices and the (column-wise) scaled eigenvector matrix
H0 of Z, where H0 already has its columns re-ordered:

{b̂, ĉ} = arg min
b,c6=0

‖
2M−1∑
q=1

bqBq −H0diag(c)‖2F , (8)

where b ∈ C2M−1 contains the coefficients bq , and c ∈ CM

contains the scaling coefficients for each column of H0.
The solution of this problem, up to a complex scaling,

is given by the smallest singular vector of the composite
matrix [B (I ?H)], with B = [vec(B1), . . . vec(B2M−1)].
The resulting matrix Ĥ = H0diag(ĉ) gives us an estimate of
H up to a complex scaling of the entire matrix. Consequently,
there is one final ambiguity, which is especially important
when one wants to estimate an ultrasound image using all
temporal frequencies jointly. The study of this problem is be-
yond the scope of this contribution, but solutions are available
in literature. See e.g. [16] for tackling this problem structure,
or [17]–[19] for solving this problem from covariance data.

IV. SIMULATION RESULTS

To avoid the robustness issues described in the previous
section, the calibration experiments have to be arranged and
designed in such a way that Y1 and Y2 are well-conditioned
and full rank matrices. To that end, we will assume the
following experimental setup.

First, for simplicity, we will assume that a set of point
sources are excited by some signals S, which the sources
transmit to the array. We will further place these sources in
the far field, evenly distributed across directions of arrival
from 0 to 180 degrees w.r.t. the array, causing the incident
waves to be nearly plane when arriving at the aberration layer,
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Fig. 3: Speed of sound and density distribution of the aberration layer used
for the simulations in this contribution.

making G well-conditioned if all directions-of-arrival (DOAs)
are covered. Note that G can also be well conditioned by
taking a sufficiently large FOV in the imaging domain. We
adopt the far-field in our simulation for simplicity for now.
Second, we will use a random aberration layer as visualized
in Fig. 3, which we empirically found to preserve information
(i.e., H is a well-conditioned full rank matrix) relatively well.
Finally, we use a white Gaussian matrix S, so that S is full
rank with high probability, and fully samples the column space
of both HG and HΘG. As a thin phase layer we choose one
that causes a different phase shift for each point on the virtual
array:

θm = exp(2πi(m−M/2)/M), m = 1, . . . ,M. (9)

We obtain the true transfer function of the random layer by
sampling H column-wise using the k-Wave ultrasound simula-
tion toolbox [20]. The background medium in the simulations
has the acoustic properties of water. We then generate Y1

and Y2 according to (5), (6), and (9), having obtained the H
matrix as just described. In k-Wave, the medium is defined on
a grid with a spacing of 50 µm, and we used an array of point
sensors with a spacing of 200 µm, with M = 20. Signals are
sampled in the time-domain using a sampling frequency of 206
MHz. For actual imaging simulations, in the next subsection,
we focus on the frequency range of approximately 3-8 MHz.

A. General performance

First, we assess the performance of the algorithm for a range
of noise levels. We define SNR with respect to Y1:

SNR =
‖Y1‖2F
σ2
nKM

, (10)

where σ2
n is the noise variance, which we assume to be

spatially and temporally white Gaussian i.i.d. noise. For the
entries of S we use a realization of an i.i.d. Gaussian dis-
tribution, with P = 1, 000. To find the correct order of the
columns of H, we sort the eigenvalues of Z according to their
phase, and apply the same permutation to the columns of H.
To resolve the per-column scaling ambiguity, we solve (8) as
described earlier. For each frequency and SNR, we compute
a noisy Y1 and Y2 100 times, and each time we compute the
normalized correlation coefficient between H and Ĥ, defined
as ρ = vec(H)Hvec(Ĥ)/(‖H‖F ‖Ĥ‖F ). As a final measure of
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Fig. 4: Absolute correlation between the estimated transfer function matrix
Ĥ and the true H for various temporal frequencies and SNR values.

performance, we show the mean absolute correlation over all
100 simulations.

The resulting performance is visualized in Fig. 4 for a
range of SNRs and various frequencies. Performance increases
with an increasing SNR, but also with increasing frequency.
For higher frequencies, the size of inhomogeneities becomes
closer to the wavelength, causing more scattering within
the aberration layer, hence causing a more diverse transfer
function matrix H. For lower frequencies, the opposite hap-
pens: inhomogeneities are relatively small compared to the
wavelength, and the layer mostly acts as a homogeneous
layer. Such layers typically have a low-pass behaviour, i.e.,
the wavefield is smoothed out during propagation through
the layer, reducing higher frequency content in the original
wavefield. Consequently, the corresponding H matrix tends to
be rank deficient or ill-conditioned, making it more difficult
to estimate it from noisy measurements using the proposed
method.

B. Imaging experiment

Next, we demonstrate the difference in terms of image re-
construction of a model calibrated using the proposed method,
and an uncalibrated model. The parameter and simulation set-
tings remain unchanged. For calibration, we use P = 1, 000,
using an SNR of 30 dB, but for the image reconstruction itself
we only use one transmit event from the sources to the array.
Furthermore, no noise is added to the array measurements
used for image reconstruction since errors in the image are
typically dominated by side and grating lobes. Note that in the
calibration experiment we used far-field sources as described
above, whereas in this simulation we consider sources posi-
tioned between the near and far field. All the sources inject a
Gaussian pulse centered at 5 MHz, with a -6 dB bandwidth
of approximately 4.5 MHz into the medium.

To obtain an image, we use the LSQR algorithm [21]
to solve (2), using the result after 6 iterations to obtain
a regularized estimate. For the uncalibrated model, we use
H = I to solve (2). The resulting image reconstructions are
shown in Fig. 5 and 6. As can be seen, the layer mostly distorts
by spatially shifting and stretching the true image, which is
resolved by using the calibrated model. Moreover, without
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Fig. 5: Image reconstructions of a resolution phantom in k-Wave. We
compare reconstruction with no calibration, a perfectly calibrated model, and
a calibrated model using the proposed method.
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Fig. 6: Lateral and axial profiles of the reconstructions of Fig. 5.

calibration some of the sources are not visible, such as the
fourth source in the axial slice of the image in Fig. 6, and the
rightmost source in the lateral slice.

V. CONCLUSION

In this contribution we considered the problem of estimating
the transfer function matrix of an aberrating layer in front
of an (ultrasound) array. The proposed method does not
require knowledge of the ultrasound image/sources, but is
dependent on the proper conditioning of the blind calibration
problem. Consequently, blind calibration becomes more robust
to additive noise for higher temporal frequencies, where the
transfer function matrices become more well-conditioned. In
noiseless scenarios, the algorithm gives an exact solution of the
transfer function matrix, up to a scaling and permutation of its
columns. This ambiguity is resolved in this paper by assuming
that the transfer function matrix has a strong Toeplitz structure,
which we empirically found to be the case for random aber-
ration layers. Finally, we demonstrated that using a calibrated
model for imaging reduces the geometric distortion introduced

by a random aberration layer, and additionally is able to reveal
sources that are hard to resolve for the uncalibrated model.
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