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Abstract—Automatic tagging of music is an important re-
search topic in Music Information Retrieval and audio analysis
algorithms proposed for this task have achieved improvements
with advances in deep learning. In particular, many state-of-the-
art systems use Convolutional Neural Networks and operate on
mel-spectrogram representations of the audio. In this paper, we
compare commonly used mel-spectrogram representations and
evaluate model performances that can be achieved by reducing
the input size in terms of both lesser amount of frequency bands
and larger frame rates. We use the MagnaTagaTune dataset
for comprehensive performance comparisons and then compare
selected configurations on the larger Million Song Dataset. The
results of this study can serve researchers and practitioners in
their trade-off decision between accuracy of the models, data
storage size and training and inference times.

Index Terms—music auto-tagging, audio classification, convo-
lutional neural networks

I. INTRODUCTION

Current state-of-the-art systems for music auto-tagging us-
ing audio are based on deep learning, in particular con-
volutional neural networks (CNNs), following two different
approaches, one directly using the audio as input (end-to-end
models) [1] and the other using the spectrograms as input [2],
[3]. Previous works [4] suggest that two approaches can have
a comparative performance when they are applied on large
datasets.

We can distinguish two architectures for the spectrogram-
based CNN solutions, depending on whether they use multiple
convolutional layers of small filters [5], [6] or if they use
multiple filter shapes [4], [7], [8]. The former is borrowed
from the computer vision field (VGG [9]) and gives a good
performance without prior domain knowledge, while the latter
is based on such a knowledge and employs filters designed
to capture information relevant for music auto-tagging such
as timbre or rhythm. Commonly mel-spectrograms are used
with such architectures although constant-Q [3], [10] and raw
short-time Fourier transform (STFT) [11] can be also applied.

In this paper, we compare the performance of two state-
of-the-art CNN approaches commonly used for music auto-
tagging [4], [6], using different mel-spectrogram represen-

tations as an input. Our research question is whether it is
possible for these approaches to operate on reduced data inputs
without a significant drop in a prediction accuracy.

To this end, we consider reducing the size of the input
spectrograms in terms of both lesser amount of frequency
bands and larger frame rates. We show that by reducing the
frequency and time resolution we can train the network faster
with a small decrease in the performance. The results of this
study can help to build faster CNN models as well as reduce
the amount of data to be stored and transferred optimizing
resources when handling large collections of music.

II. RELATED WORK

In image processing, there are studies that consider simpli-
fications of CNN architectures by means of reducing network
width, depth and input resolution [12]. However, only few
previous studies compared different spectrogram representa-
tions for CNN architectures in Music Information Retrieval
(MIR). Instead, it is common to focus on tuning model
hyper-parameters with a fixed chosen input. The choice of
the spectrogram input is done empirically and often follows
approaches previously reported in literature. Very few infor-
mation comparing different inputs is available as the authors
tend to only report the most successful approaches. Also, as
the existing studies on music auto-tagging focus on optimizing
accuracy metrics, there is a lack of works that intend to
simplify networks and their inputs for computational efficiency
and consider practical aspects of the efficient ways to store
spectrogram representations.

To the best of our knowledge, there is no systematic com-
parison of mel-spectrogram representations. The only work
we are aware of in this direction has been done by Choi
et al. [11], where the authors compare model performances
under different pre-processing strategies such as scaling, log-
compression, and frequency weighting. The same authors
provide an overview of different inputs that can be used for
the auto-tagging task in [3]. In relation to mel-spectrograms,
they suggest that one can optimize the input to the network
by changing some of the signal processing parameters such as



sampling rate, window size, hop size or mel bins resolution.
These optimizations can help to minimize data size and
train the networks more efficiently, however, no quantitative
evaluations are provided.

III. DATASETS

Researchers in music auto-tagging commonly use the
MagnaTagATune dataset [13] to evaluate multiple settings and
then repeat some settings on Million Song Dataset [14] to
validate differences in performances on a larger scale [2],
[4], [6]. It is important to note that both datasets contain
unbalanced and noisy and/or weakly-labeled annotations [15]
and therefore are challenging to work with, as the reliability
of conducted evaluations may be affected [16]. Still, these are
the two mostly used datasets for benchmarking due to the
availability of audio.

A. MagnaTagATune (MTAT)

MagnaTagATune dataset contains multi-label annotations of
genre, mood and instrumentation for 25,877 audio segments.
Each segment is 30 seconds long, and the dataset contains
multiple segments per song. All the audio is in MP3 format
with 32 Kbps bitrate and 16 KHz sample rate. The dataset is
split into 16 folders, and researchers commonly use the first 12
folders for training, the 13th for validation and the last three
for testing. Also, only 50 most frequent tags are typically used
for evaluation. These tags include genre and instrumentation
labels, as well as eras (e.g., ’80s’ and ’90s’) and moods.

B. Million Song Dataset (MSD)

The MSD [14] is a large dataset of audio features, expanded
by the MIR community with additional information including
tags, lyrics and other annotations. It also contains a subset
mapped by researchers to 30 seconds audio previews available
at 7digital and collaborative tags from Lastfm. This subset
contains 241,904 annotated track fragments and is commonly
used as another larger scale benchmark for music auto-tagging
systems. The tags cover genre, instrumentation, moods and
eras. Audio fragments vary in their quality, encoded as MP3
with a bitrate ranging from 64 to 128 Kbps and the sample
rates of 22 KHz or 44 KHz.

IV. BASELINE ARCHITECTURES

In this work, we reproduce two CNN architectures applying
them on mel-spectrograms with reduced frequency and time
resolution. These architectures are among the best performing
according to the existing evaluations on the MTAT and MSD
datasets:

• VGG applied for music (VGG-CNN) [6]. This archi-
tecture contains multiple layers of small-size 2D-filters
as it has been adapted from the computer vision field
[9]. It is a fully-convolutional network consisting of four
convolutional layers with small 3×3 filters1 and max
pooling (MP) settings presented in Table I. The network
operates on 96-bands mel-spectrograms for 29.1s audio

1Number of mel bands × number of frames.

segments, 12 KHz sample rate, 512 samples frame size
and the hop size of 256 samples.

• Musically-motivated CNN (MUSICNN) [4]. The archi-
tecture contains more filters of different shapes designed
with an intention to capture musically relevant informa-
tion such as timbre (38×1, 38×3, 38×7, 86×1, 86×3,
86×7) and temporal patterns (1×32, 1×64, 1×128,
1×165) in the first layer. The convolution results are
concatenated and passed to three additional convolutional
layers including residual connections.2 Original network
operates on 96-bands mel-spectrograms computed on
smaller 15s audio segments with 16 KHz sample rate,
512 samples frame size and 256 samples hop size.3 It then
averages tag activation scores across multiple segments of
the same audio input.

For evaluation on MTAT and MSD, we use batch normaliza-
tion, Adam [17] as optimization method with a learning rate
of 0.001 and binary cross-entropy as loss function for both
architectures following their authors.

TABLE I: The baseline VGG CNN model architecture.

Input Mel-spectrogram (96×1366 × 1)
Layer 1 Conv 3×3×128

MP (2, 4) (output: 48×341×128)
Layer 2 Conv 3×3×384

MP (4, 5) (output: 24×85×384)
Layer 3 Conv 3×3×768

MP (3, 8) (output: 12×21×768)
Layer 4 Conv 3×3×2048

MP (4, 8) (output: 1×1×2048)
Output 50×1 (sigmoid)

V. MEL-SPECTROGRAMS

We computed mel-spectrograms using typical setting for
the MTAT dataset in the state of the art [4], [6]. The most
common settings are 12 KHz or 16 KHz sample rate, frame
and hop size of 512 and 256 samples, respectively, and Hann
window function. Commonly, 96 or 128 mel bands are used,
covering all frequency range below Nyquist (6 KHz and 8
KHz, respectively) and computed using Slaney’s mel scale
implementation [18]. To normalize the mel-spectrograms we
considered two log-compression alternatives denominated as
“dB” for 10 · log10(x) [11] and “log” for log(1+ 10000 · x)
[2].

Starting with these settings, we then considered different
variations in frequency and time resolutions (smaller number
of mel bands and larger hop sizes). Table II shows all different
spectrogram configurations that we evaluated on the MTAT
dataset. Each configuration results in a different dimension
of the resulting feature matrix (the number of mel bands ×
the number of frames). An audio segment of 29.1 seconds
corresponds to 1366 and 1820 frames in the case of no tem-
poral reduction (×1) and the 12 KHz and 16kHz sample rate,

2We refer the readers to the original paper for all architecture details.
3Frame and hop size settings are confirmed in personal communication with

the author.



TABLE II: Mel-spectrograms configurations evaluated on the
MTAT dataset. Hop sizes are reported relative to the reference
hop size of 256 samples (e.g., ×5 stands for a 5 times longer
hop size).

sample rate # mel hop size log type
12 KHz 128 ×1,×2,×3,×4× 5,×10 log, dB
12 KHz 96 ×1,×2,×3,×4× 5,×10 log, dB
12 KHz 48 ×1,×2,×3,×4× 5,×10 log, dB
12 KHz 32 ×1 log, dB
12 KHz 24 ×1 log, dB
12 KHz 16 ×1 log, dB
12 KHz 8 ×1 log, dB
16 KHz 128 ×1,×2,×3,×4× 5,×10 log, dB
16 KHz 96 ×1,×2,×3,×4× 5,×10 log, dB
16 KHz 48 ×1,×2,×3,×4× 5,×10 log, dB
16 KHz 32 ×1 log, dB
16 KHz 24 ×1 log, dB
16 KHz 16 ×1 log, dB
16 KHz 8 ×1 log, dB

respectively. In turn, the maximum reduction we considered
(×10) results in 137 and 182 frames.

All spectrograms were computed using Essentia4 music
audio analysis library [19]. It was configured to reproduce
mel-spectrograms from another analysis library used by the
state of the art, LibROSA,5 for compatibility. As a matter of
interest, to have a better understanding of what information
these spectrograms are able to capture, we provide a number
of examples sonifying the resulting mel-spectrograms for all
considered frequency and time resolutions online.6

VI. BASELINE ARCHITECTURE ADJUSTMENTS

In this section we explain the changes introduced to the
original model architectures presented in Section IV.

A. VGG-CNN

We try to preserve the original architecture defined in [6] in
terms of the size and number of filters in each layer, but we
need to adjust max pooling settings since we are reducing the
dimensions of the mel-spectrogram input. We report all such
modifications for the VGG-CNN architecture in Table III. It
reports the sizes of square max-pooling windows in each layer
selected accordingly to the number of mel bands and the hop
size. We prioritize changes in max pooling in the latter layers
when possible. We adjust the pooling size to match the input
dimensions when possible, otherwise padding is applied. In
the case of 16 KHz sample rate, more adjustments to VGG-
CNN are necessary because, having a fixed reference hop size
of 256 samples, the higher sample rate implies better temporal
resolution and the larger mel-spectrograms (1820 frames).

It is important to note that if we change the resolution of the
input, the 3×3 filters in VGG-CNN capture different ranges of
frequency and temporal information. For example, they cover
twice the mel-frequency range and a doubled time interval

4https://essentia.upf.edu
5https://librosa.github.io
6https://andrebola.github.io/EUSIPCO2020/demos

when using 48 mel bands and ×2 hop size. This can be an
advantage, because it reduces the amount of information that
the network needs to learn.

TABLE III: Adjusted sizes for max-pooling windows (time
and frequency) in the four consecutive layers of the VGG
CNN model with respect to the hop size, sample rate and the
number of mel bands. The original sizes are highlighted in
bold.

hop size max-pooling size (time)
12 KHz 16 KHz

×1 4, 5, 8, 8 4, 5, 9, 10
×2 4, 5, 8, 4 4, 5, 9, 5
×3 4, 5, 8, 2 4, 5, 9, 3
×4 4, 5, 8, 2 4, 5, 9, 2
×5 4, 5, 8, 1 4, 5, 9, 2
×10 4, 5, 4, 1 4, 5, 9, 1

# mel max-pooling size (frequency)
128 2, 4, 4, 4
96 2, 4, 3, 4
48 2, 4, 3, 2
32 2, 2, 3, 2
24 2, 2, 3, 2
16 2, 2, 2, 2
8 2, 2, 2, 1

B. MUSICNN

In the original model, timbre filters’ sizes in frequency
are computed relative to the number of mel bands (90% and
40%). We preserve the same relation when we change this
number. In our implementations we modified the segment size
to 3 seconds, as we obtained slightly better results in our
preliminary evaluation.7 We keep the temporal dimension of
the filters (the number of frames) intact for all considered mel-
spectrograms settings.

VII. EVALUATION METRICS

CNN models for auto-tagging output continuous activation
values within [0, 1] for each tag, and therefore we can study the
performance of binary classifications under different activation
thresholds. To this end, following previous works [4], [6], [20]
we use Receiver Operating Characteristic Area Under Curve
(ROC AUC) averaged across tags as our performance metric.
We also report Precision-Recall Area Under Curve (PR AUC),
because previous studies [21] have shown that ROC AUC can
give over-optimistic scores when the data is unbalanced, which
is our case. Both ROC AUC and PR AUC are single value
measures characterizing the overall performance, which allows
to easily compare multiple systems.

To measure the computational cost of models’ training and
inference we use an estimate of the number of multiply-
accumulate operations required by a network to process one
batch (1 GMAC is equal to 1 Giga MAC operations). This
metric is related to the time a model requires for training and
inference. We use an online tool8 to compute approximate
MAC values for our architectures.

7Similar to suggestions by other researchers reproducing this model.
8https://dgschwend.github.io/netscope/quickstart.html

https://essentia.upf.edu
https://librosa.github.io
https://andrebola.github.io/EUSIPCO2020/demos
https://dgschwend.github.io/netscope/quickstart.html


VIII. RESULTS

We evaluated the considered mel-spectrogram settings on
the adjusted CNN models. Full results for all evaluated con-
figurations are available online.9 In Figure 1 we show the
results of the evaluation for VGG-CNN on the MTAT dataset,
repeated three times for each configuration. The first two plots
show the ROC AUC results for the 12 KHz and 16 KHz sample
rate using the log and dB scaling. Similarly, the third and forth
plots show the PR ROC results under the same conditions. The
last plot shows GMAC.

The results show that using some of the settings we can
reduce the size of the input in frequency and time without
affecting much the performance of VGG-CNN on the MTAT
dataset. For example, if we reduce the frequency resolution
from 96 to 48 mel bands we can reduce the MAC operations
near 50% without affecting the performance in all config-
urations. Similarly, we can also reduce time resolution by
50% without affecting performance, and in this case we also
reduce the MAC operations by 50% in all configurations. We
can further reduce the number of operations by the cost of
some performance decrease. This can be especially useful for
applications requiring lightweight models, as we can get a
model ×10 faster by sacrificing between 1.4 and 1,8% of
the performance depending on the configuration. Interestingly
enough, both ROC AUC and PR AUC slightly improve
when using 48 mel bands compared to 96 bands in most of
the cases, however no statistically significant difference was
found (P > 0.08 for all corresponding configurations in an
independent samples t-test).

For the MUSICNN model, we have tested some of the
configurations reported in Table IV. We only considered the
frequency resolution reduction to 48 mel bands and no hop
size increments due to significantly slower training time (see
Section IV). The results show comparable performance of 96-
and 48-band mel-spectrograms and are consistent with the
above mentioned findings for the VGG-CNN model. Overall,
using 128 mel bands resolution provided the best performance.
Also, according to the results, the MUSICNN architecture
outperforms VGG-CNN, which is consistent with the reports
from the authors.

To check how our findings scale, we selected a number
of configurations and re-evaluated the models on the MSD
dataset. The results are reported in Table V. In the case of
VGG-CNN the performance of the baseline architectures is
slightly superior to the ones working with lower-resolution
mel-spectrograms, which comes by cost of a significantly
larger computational effort. For example, for the 12 KHz
sample rate, × 1 hop size and dB compression settings,
reducing the number of mel bands from 96 to 48 results in
the decrease is 0.16% in the ROC AUC performance and
50% reduction in GMACs. For a similar 16 KHz/dB case
the reduced model has the same performance with the benefit
of twice as low computational speed. In the case of the
MUSICNN architecture we see a reduction of the performance

9https://andrebola.github.io/EUSIPCO2020/results

of 0.19% if we compare 96 vs 48 mel bands using 12 KHz
sample rate and 0.11% for 16 KHz.

TABLE IV: ROC AUC and PR AUC of the MUSICNN model
on the MTAT dataset for a selection of configurations using
dB log-compression and the reference hop size (× 1).

# mels sample rate ROC AUC PR AUC
128 12 KHz 90.40 38.54
96 12 KHz 90.50 37.70
48 12 KHz 90.33 37.80
128 16 KHz 90.83 38.92
96 16 KHz 90.60 38.09
48 16 KHz 90.50 37.70

TABLE V: ROC AUC and PR AUC of the models on the
MSD dataset for a selection of configurations using dB log-
compression.

# mels hop size sample rate ROC AUC PR AUC
128 ×1 12 KHz 86.48 27.56
96 ×1 12 KHz 86.67 27.70
48 ×1 12 KHz 86.53 27.27
128 ×2 12 KHz 86.28 27.24
96 ×2 12 KHz 86.18 26.93
48 ×2 12 KHz 85.86 26.42
128 ×1 16 KHz 86.84 28.10
96 ×1 16 KHz 86.71 28.06
48 ×1 16 KHz 86.73 27.78
128 ×2 16 KHz 86.34 27.06
96 ×2 16 KHz 86.63 27.70
48 ×2 16 KHz 86.41 26.83

(a) VGG-CNN

# mels hop size sample rate ROC AUC PR AUC
128 ×1 12 KHz 87.10 26.97
96 ×1 12 KHz 87.16 27.10
48 ×1 12 KHz 86.99 26.66

128 ×1 16 KHz 87.21 26.91
96 ×1 16 KHz 87.21 26.96
48 ×1 16 KHz 87.10 26.64

(b) MUSICNN

IX. CONCLUSIONS

In this paper we have studied how different mel-spectrogram
representations affect the performance of CNN architec-
tures for music auto-tagging. We have compared the perfor-
mances of two state-of-the-art models when reducing the mel-
spectrogram resolution in terms of amount of frequency bands
and frame rates. We used the MagnaTagaTune dataset for
comprehensive performance comparisons and then compared
selected configurations on the larger Million Song Dataset.
The results suggest that is possible to preserve a similar
performance while reducing the size of the input. They can
help researchers and practitioners to make trade-off decision
between accuracy of the models, data storage size and training
and inference time, which are crucial in many applications.

As a future work, other approaches such as quantization of
mel-spectrogram values will be considered for the reduction of

https://andrebola.github.io/EUSIPCO2020/results


Fig. 1: Mean and standard deviation of ROC AUC and PR AUC of the VGG-CNN model computed on three runs for each
mel-spectrogram configuration (# mel, hop size, sample rate, and log type) and the associated GMAC values.

the input data dimensionality. The conducted evaluation can be
also extended to other state-of-the-art architectures operating
on mel-spectrograms [5], constant-Q [10] and raw waveform
approaches [1], [11]. It is also promising to conduct a similar
evaluation on other audio auto-tagging tasks. All the code to
reproduce this study is open-source and available online.10
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