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Abstract—In this paper, we compare different audio signal
representations, including the raw audio waveform and a variety
of time-frequency representations, for the task of audio synthesis
with Generative Adversarial Networks (GANs). We conduct the
experiments on a subset of the NSynth dataset. The architecture
follows the benchmark Progressive Growing Wasserstein GAN.
We perform experiments both in a fully non-conditional manner
as well as conditioning the network on the pitch information. We
quantitatively evaluate the generated material utilizing standard
metrics for assessing generative models, and compare training
and sampling times. We show that complex-valued as well
as the magnitude and Instantaneous Frequency of the Short-
Time Fourier Transform achieve the best results, and yield fast
generation and inversion times. The code for feature extraction,
training and evaluating the model is available online.'

Index Terms—audio, representations, synthesis, generative,
adversarial

I. INTRODUCTION

In recent years, deep learning for audio has shifted from
using hand-crafted features requiring prior knowledge, to
features learned from raw audio data or mid-level represen-
tations such as the Short-Time Fourier Transform (STFT) [1].
Indeed, this has allowed us to build models requiring less
prior knowledge, yet at the expense of data, computational
power, and training time [2]. For example, deep autoregressive
techniques working directly on raw audio [3], as well as on
Mel-scaled spectrograms [4], currently yield state-of-the-art
results in terms of quality. However, these models can take up
to several weeks to train in a conventional GPU, and also, their
generation procedure is too slow for typical production envi-
ronments. On the other hand, Generative Adversarial Networks
(GANY5) [5], have achieved comparable audio synthesis quality
and faster generation time [6], although they still require long
training times and large-scale datasets when modeling low or
mid-level feature representations [7], [8].

It is still subject to debate what the best audio repre-
sentations are in machine learning in general, and the best
choice may also depend on the respective application and the
models employed. In audio synthesis with GANSs, different
representations may result in different training and generation
times, and may also influence the quality of the resulting
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output. For example, operating on representations that com-
press the information with respect to perceptual principles, or
are structured to better support a specific model architecture,
may yield faster training and generation times, but may result
in worse audio quality. Therefore, in this paper, we compare
different audio signal representations, including the raw audio
waveform and a variety of time-frequency representations, for
the task of adversarial audio synthesis with GANSs. To this end,
we adapt several objective metrics, initially developed for the
image domain, to audio synthesis evaluation. In addition, we
also report on the respective training, generation, and inversion
times. Furthermore, we investigate whether global attribute
conditioning may improve the quality and coherence of the
generated audio. For that, we perform extensive experimental
evaluation when conditioning our models on the pitch infor-
mation, as well as in a fully unconditional setting. We use
a vanilla Progressive Growing Wasserstein GAN built upon
convolutional blocks [9], as this architecture has achieved
state-of-the-art audio synthesis [6].

The paper is organized as follows: In Section 2, we in-
troduce the audio representations used in our experiments. In
Section 3, we describe the dataset, architecture design, training
procedure, and the metrics used for evaluation. Results are
presented in Section 4, and we conclude in Section 5.

II. AUDIO REPRESENTATIONS

Audio signals consist of large amounts of data in which
relevant information for a specific task is often hidden, and
spread over large time spans. Neural Networks can benefit
from feeding in sparse representations of the audio data,
where few coefficients reveal the information of interest. These
types of representations may yield faster training and less
complex architectures, which is of particular interest when
training deep generative models. Following, we enumerate
the audio representations that are compared in this work,
highlighting strengths and weaknesses for the specific task
of audio synthesis with GANs. Except stated otherwise, we
compute the audio representations using Librosa [10].

o The raw audio waveform consists of a sequence of nu-
merical samples that specify the amplitude values of the
signal at time steps t. Using this representation as input
is challenging for generative modeling, particularly in the
case of music signals [11]. On the other hand, it enables
neural networks to build the representation that better
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suits a specific task without any prior assumptions. In the
following, we refer to this representation as waveform.
The Short-Time Fourier Transform (STFT) decom-
poses a signal as a weighted sum of complex sinusoidal
basis vectors with linearly spaced center frequencies,
unveiling the time-frequency structure of an audio signal.
It is commonly decomposed into magnitude and phase
components. The latter is typically noisy, which makes
it difficult for neural networks to model. This problem
is mitigated by using the Instantaneous Frequency (IF),
providing a measure of the rate of change of the phase
information over time [12]. The STFT transform is cheap
to compute and perfectly invertible, which makes it pop-
ular for audio synthesis [6], [7]. Here we make use of the
complex-valued STFT, referred to as complex throughout
our experiments, as well as the magnitude and IF of the
STFT (referred to as mag-if).

The Constant-Q Transform (CQT) decomposes a sig-
nal as a weighted sum of tonal-spaced filters, where
each filter is equivalent to a subdivision of an octave
[13]. This musically motivated spacing of frequencies
enables representing pitch transpositions as simple shifts
along the frequency axis, which is well-aligned with
the equivariance property of the convolution operation.
The CQT transform has been used as a representation
for Music Information Retrieval [14] and some works
have exploited it for audio synthesis [15]. The main
disadvantage of CQT over STFT is the loss of perceptual
reconstruction quality due to the frequency scaling in
lower frequencies. We use a pseudo invertible CQT [16],
as well as an implementation based on the Non-Stationary
Gabor Transform (CQ-NSGT)? [17], which allows for
perfect reconstruction. In the following, we refer to these
two methods for computing the CQT as cqt and cq-nsgt,
respectively.

The Mel spectrogram compresses the STFT in frequency
axis by projecting it into a perceptually inspired fre-
quency scale, called the Mel-scale [18]. Mel discards the
phase information, so we use the iterative method from
Griffin and Lim [19] to recover the phase for synthesis.
We refer to this representation as mel throughout our
experiments.

The Mel Frequency Cepstral Coefficients (MFCC) [20]
provide a compact representation of the spectral envelope
of an audio signal. Originally developed for speech recog-
nition, they are now widely used in musical applications,
as they capture perceptually meaningful musical timbre
features [21]. For synthesis, we invert MFCC to the Mel
scale and use Griffin-Lim to recover the phase. We refer
to this representation as myfcc in our experiments.
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Fig. 1. The architecture of the generator. The discriminator mirrors this
configuration. The format block zero-pads and transforms the input noise and
the one-hot attribute encoding to a (batch_size, 128, wo, ho) tensor; where
wo and hg are the sizes of each dimension at the first scale block input. The
CNNs within each scale block have 128, 64, 64, 64, 32 feature maps, from
low to high resolution, respectively. We apply pixel normalization after every
convolutional layer.

III. EXPERIMENT SETUP
A. Architecture design and training procedure

Our reference architecture is a Progressive Growing GAN
(P-GAN) [9], borrowed from the Computer Vision literature,
which has achieved state-of-the-art results in neural audio
synthesis with GANs [6]. The generator’s architecture is
depicted in Figure 1. The generator G samples a random
vector z with 128 components from a spherical Gaussian
and feeds it together with the one-hot conditional information
one_hot_p through a Format block and a stack of Scale blocks.
The Format block turns the 1D input vector z + one_hot_p,
with size 128 + 27, into a 4D convolutional input by zero-
padding in the time and frequency-dimension (i.e., placing
the input vector in the middle of the convolutional input with
128 + 27 convolutional maps). The Scale blocks are a stack
of convolutional and box-up-sampling blocks that transform
the convolutional input to the generated output signal. The
discriminator D is composed of convolutional and down-
sampling blocks, mirroring the configuration of the generator.
D estimates the Wasserstein distance between the real and
generated distributions [22]. We use a gradient penalty of 10.0
to enforce the Lipschitz constraint and pixel normalization
at each layer. We initialize weights to zero and apply He’s
constant [23] for normalizing each layer at run-time in order
to ensure an equalized learning rate. Also, we use a mini-
batch standard deviation before the last layer of D [24].
This encourages GG to generate more variety and thus reduces
mode collapse. For conditional model experiments, we add an
auxiliary classification loss to the discriminator that learns to
predict the pitch label [25].

Zhttps://github.com/grrrr/nsgt
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TABLE I
AUDIO REPRESENTATION CONFIGURATION

Audio rep. channels freq. bins time frames/instance
waveform 1 - 16000
complex 2 512 64

mag-if 2 512 64

cq-nsgt 4 97 948

cqt 2 84 256

mel 1 128 64

mfcc 1 128 64

Training is divided into phases, wherein each phase a new
layer, generating a higher-resolution output, is added to the
existing stack. A blending parameter o progressively fades in
the gradient derived from the new layers, minimizing possible
perturbation effects. We train all the models for 1.1M iterations
on batches of 8 samples: 200k iterations in each of the first
four phases and 300k in the last one. We employ Adam as the
optimization method.

B. Dataset

For this work, we make use of the NSynth dataset [26],
consisting of approximately 300,000 single-note audios played
by more than 1,000 different instruments from 10 different
families. The samples are aligned, meaning that the onset
of each note is centered at time 0. It contains labels for
pitch, velocity, instrument type, acoustic qualities (acoustic or
electronic), and more, although, for this particular work, we
only make use of the pitch information for those experiments
regarding conditional models. Each sample is four seconds
long, with a 16kHz sample rate. The subset of NSynth we
use here only contains acoustic instruments from the brass,
flutes, guitars, keyboards, and mallets families. We also trim
down the audio samples from 4 to 1 seconds and only consider
samples with a MIDI pitch range from 44 to 70 (103.83 -
466.16 Hz), as this is the range in which there exist the most
examples from the chosen instrument types. This yields a
subset of approximately 22k sounds with balanced instrument
class distribution. For the evaluation, we perform an 80/20%
split of the data.

All time-frequency representations, except cqt and cg-nsgt,
are computed using an FFT size of 1024 and 75% overlapping.
In the case of mel and mfcc, we employ a filter-bank of 128
Mel bins. For mfcc, we do not compress the Mel frequency
information so as to preserve pitch information. cqt is com-
puted using 12 bins per octave with a total of 84 bins. cq-nsgt
is computed using 193 bins and assuming a complex signal.
This leads to a non-symmetric spectrogram in which correlated
frequency information is mirrored around the DC component.
In order to make the information more local, we fold the
magnitude and phase components and discard the DC. The
resulting tensor sizes for each representation are summarized
in Table I.

C. Evaluation

Evaluating generative models is not straight-forward. Par-
ticularly in the case of audio synthesis, where the goal of
synthesizing perceptually-realistic audio is hard to formalize.
A common practice is to compare models by listening to
samples and to measure their performance in classification
tasks. Similarly to previous work [6], we evaluate our models
against a diverse set of metrics that are common in the
literature, each capturing a distinct aspect of the model’s
performance.

o The Inception Score (IS) is defined as the mean KL
divergence between the conditional class probabilities
p(ylx), and the marginal distribution p(y) using the
predictions of an Inception classifier [24]:

exp (E-[KL(p(ylz)||p(y))]) (1)

Similar to [6], we adapt this metric to audio evaluation
by training the Inception Net® on the tasks of instrument
and pitch classification from magnitude STFT spectro-
grams. We refer to these as Pitch Inception Score (PIS)
and Instrument Inception Score (IIS), respectively. IS
penalizes models whose examples are not classified into
a single class with high confidence, as well as models
whose examples belong to only a few of all the possible
classes. We trained the pitch and instrument inception
model variants on the same sub-set of the NSynth used
throughout our experiments, with a train-validation split
of 80% and 20%, respectively.

o Kernel Inception Distance (KID). The KID measures
the dissimilarity between samples drawn independently
from real and generated distributions [27]. It is defined
as the squared Maximum Mean Discrepancy (MMD)
between Inception representations. A lower MMD means
that the generated probability distribution P, is closer to
the real data distribution P,.. We employ the unbiased
estimator of the squared MMD [28] between m samples
X ~ P, and n samples ¥ ~ P, for some fixed
characteristic kernel function &, defined as:

1 m
2 _ . .
MMD?(X,Y) = oy ;k(mz,ij)
1 n
+ n(n_l)Zk(yi,yj) 2

i

9 m n
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Here, we use an inverse multi-quadratic kernel (IMQ)
k(z,y) = 1/(1 + [|lz — y[[?/29%) with 4> = 8, as it
has a heavier tail than a Gaussian kernel, hence, it is
more sensitive to outliers. We borrow this metric from
the Computer Vision literature and apply it to the audio
domain.

3 https://github.com/pytorch/vision/blob/master/torchvision/models/

inception.py
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TABLE II
UNCONDITIONAL MODELS. HIGHER IS BETTER FOR PIS AND IIS, LOWER
IS BETTER FOR PKID, IKID AND FAD.

Models PIS IIS PKID IKID FAD
real data 125 4.0 0.000 0.000 0.01
waveform 3.7 1.8  0.083 0.291 6.46
complex 9.5 2.8 0.007 0.124 3.17
mag-if 7.3 27 0015 0149 271
cq-nsgt 8.1 34 0012 0.041 211
cqt 7.8 26 0013 0112 255
mel 2.3 1.1 0.147 0300 5.20
mfcc 8.9 3.0 0.008 0.080 2.92

o The Fréchet Audio Distance (FAD) compares the statis-
tics of real and fake data computed from an embedding
layer of a pre-trained VGGish model* [29]. Viewing the
embedding layer as a continuous multivariate Gaussian,
the mean and covariance are estimated for real and fake
data, and the FAD between these is calculated as:

FAD = [|u — :“9H2 +ir(Er +pg — 2¢/5:5g)  (3)

where (fi,,%,) and (pg,%,) are the mean and covari-
ances of P. and P,, respectively. Lower FAD means
smaller distances between synthetic and real data distribu-
tions. FAD performs well in terms of robustness against
noise, computational efficiency, consistency with human
judgments and sensitivity to intra-class mode dropping.

IV. RESULTS
A. Qualitative results

We encourage the reader to listen to the audio examples
provided at the accompaniment website.> mag-if and complex
seem to have the best-perceived quality, and are comparable to
state-of-the-art works on adversarial audio synthesis (e.g., [6],
[8]). We note that every representation has specific artifacts.
While waveform seems to suffer from general broad-band
noise, in nsgt problems in reproducing plausible phase infor-
mation sometimes lead to percussive artifacts (and frequency
sweeps) at the beginning and end of a sample. The samples
in other representations suffer from ringing (e.g., complex) or
from pitch distortion (e.g., cqt).

Interpolation between random points in the latent space
seems to produce particularly smooth transitions in complex,
followed by mag-if, cqt, and cg-nsgt. The model trained on mel
fails to faithfully reproduce the timbral characteristics of the
training data, and also does not generate the required pitches
in the pitch-conditional setting (it always produces the same
pitch for a given z). As the training setup is the same for every
representation, the reason for that is not clear.

B. Quantitative results
The quantitative evaluation for samples generated by the
unconditional and conditional models are shown in Table II

“https://github.com/google-research/google-research/tree/master/frechet_
audio_distance
Shttps://sites.google.com/view/audio-synthesis- with-gans

TABLE 111
CONDITIONAL MODELS. HIGHER IS BETTER FOR PIS AND IIS, LOWER IS
BETTER FOR PKID, IKID AND FAD.

Models PIS 1IIS PKID IKID FAD
real data 125 4.0 0.000 0.000 0.01
waveform 3.4 2.1 0.222 0.108  1.87
complex 12.0 2.7 0.005 0.159  0.11
mag-if 126 39 0.002 0.020 0.12
cq-nsgt 7.6 33 0014 0.049 0.12
cqt 123 3.9 0.008 0.107  2.03
mel 123 3.8 0.165 0.371 479
mfcc 9.7 3.7  0.006 0.074  2.62
TABLE IV

METRICS OF POST-PROCESSED REAL DATA FOR LOSSY
TRANSFORMATIONS. HIGHER IS BETTER FOR PIS AND IIS, LOWER IS
BETTER FOR PKID, IKID AND FAD.

Models PIS IIS PKID IKID FAD
cqt 10.5 3.1  0.001 0.001  0.66
mel 125 3.7 0.001 0.001  0.31
mfcc 12.8 34 0.001 0.001  1.29

and Table III, respectively. We observe a trend that the figures
get worse from complex and mag-if to mel and waveform.
In some metrics, the highest quality models (complex, mag-if,
and cqt) obtain results close to the real data. Furthermore, the
results are generally better in the conditional setting. This is
probably because the pitch-conditioning signal guides the gen-
erator in covering the variance over pitches, making it easier
for the generator / discriminator pair to learn the remaining
variances. Informal listening tests suggest that PKID, IKID and
FAD are better aligned with perceived sound quality than PIS
and IIS. In PKID, IKID and FAD (in both, the conditional and
unconditional setting), the models of all representations seem
to perform similarly, except mel and waveform, which both
yield considerably worse results.

PIS and IIS seem to correspond better with perceived quality
in the unconditional setting (with waveform and mel having
low PIS and IIS) than in the conditional setting. In the latter,
PIS and IIS fail to reflect the incapability of the model trained
on mel to produce clear pitches, and to faithfully reproduce
the timbral characteristics of the training data. Despite this, we
note that both PIS and IIS are high for that model. Conversely,
for data generated in the waveform domain, the PIS and IIS
are low, even though pitch and instrument types can be clearly
perceived in informal listening tests. This suggests that the
inception models are not robust to the particular artefacts
of these representations and therefore not very reliable in
measuring the overall generation quality.

For lossy representations (i.e., cqt, mel and mfcc), the
quantitative evaluation may suffer from a bias introduced
by the lossy compression itself. Therefore, we compute the
lower bounds of each representation by encoding/decoding the
dataset used for our experiments in the respective transforma-
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TABLE V
TRAINING, SAMPLING AND INVERSION TIMES FOR EACH MODEL

Models training (days) sampling (s) inversion (s)
waveform 6.1 1.31 0.00
complex 35 0.20 0.01
mag-if 4.5 0.24 0.02
cq-nsgt 5.3 0.46 0.03
cqt 2.1 0.09 0.03
mel 1.5 0.04 3.69
mfcc 2.0 0.07 10.80

tions, and treating that as “generated data” in the evaluation.
Table IV shows the results of this experiment. While cgt
seems to have slightly worse lower bounds in general, the
FAD of mfcc is worse than that of mel, even though there are
no audible differences in the audio. Apparently the cosine-
transform used to compute mfcc from mel introduces non-
audible artifacts, which have considerable effect on the latent
representations of the Inception model.

Table V shows the training, sampling, and inversion times
associated with each model and representation. Note that
training times are just rough measures, as they might be
affected by variations in performance and resource availability
in the training infrastructure. We can observe that, in general,
representations with higher compression yield faster training
and sampling times, but at the expense of slower inversion.
cqt produces the best training, sampling, and inversion times
trade-off, followed by the complex and mag-if representations.

V. CONCLUSION

In this work, we compared a variety of audio representations
for the task of adversarial audio synthesis of pitched sounds.
We performed quantitative and qualitative evaluation, and
reported on training, generation, and inversion times. We
found that complex and mag-if yield the best quantitative
metrics, which is also aligned with informal listening of the
generated samples. This is interesting, as we are not aware that
complex was used before in audio generation. We also found
that evaluation metrics are generally aligned with perceived
quality, but in some cases they can be sensitive to non-audible
representation-specific artifacts (e.g., FAD), or yield figures
which seem over-optimistic when listening to the examples
(e.g., PIS and IIS).
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