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Abstract—In this paper, we focus on graph learning from
multi-view data of shared entities for spectral clustering. We
can explain interactions between the entities in multi-view data
using a multi-layer graph with a common vertex set, which
represents the shared entities. The edges of different layers
capture the relationships of the entities. Assuming a smoothness
data model, we jointly estimate the graph Laplacian matrices
of the individual graph layers and low-dimensional embedding
of the common vertex set. We constrain the rank of the graph
Laplacian matrices to obtain multi-component graph layers for
clustering. The low-dimensional node embeddings, common to
all the views, assimilate the complementary information present
in the views. We propose an efficient solver based on alternating
minimization to solve the proposed multi-layer multi-component
graph learning problem. Numerical experiments on synthetic
and real datasets demonstrate that the proposed algorithm
outperforms state-of-the-art multi-view clustering techniques.

Index Terms—Clustering, graph learning, multi-layer graphs,
multi-view data, representation learning.

I. INTRODUCTION

We often observe complementary information about a com-
mon source from multiple modalities or through different
feature subsets in data analysis. Various aspects of interactions
underlying multi-view datasets can be represented using multi-
layer graphs, in which each graph layer represents a different
view. All the graph layers in a multi-layer graph share the
same set of nodes representing the shared entities. However,
the edges on distinct layers represent the interactions between
the entities in that view [1]. For example, in a social network
graph, we can think of people’s interests like favorite sport,
affiliation, and hobbies as multiple views of people in the
network [2]. Each of these views can be represented by a graph
giving rise to a multi-layer graph with each layer consisting
of the same set of nodes representing people. Also, one can
have data from multiple modalities. For example, in brain
imaging and analysis, data from different modalities, like
fMRI, sMRI and DTI [3], may be considered as signals on a
multi-layer graph. The edges in different graph layers represent
interactions between the same set of brain regions observed in
different modalities [4], [5].

The underlying graph structure is leveraged to solve several
signal processing and machine learning tasks like denoising,
spectral clustering, and dimensionality reduction. However,
the underlying graph may not always be readily available.
Learning graphs from data is an ill-posed problem. Although
nearest neighbor graphs, correlation graphs, or Gaussian simi-
larity kernels learnt from data are simple and commonly used

choices, they are sensitive to noise or missing samples. Hence,
several graph learning solutions that carefully model the data
(e.g., using a smoothness or probabilistic graphical model)
and incorporate prior information (such as sparsity, product, or
multi-component structure) about the resulting topology have
been proposed [6]–[12]. Although the existing graph learning
methods can be directly used to learn the individual graph
layers of a multi-layer graph, the information contained in all
the views cannot be captured by any of the individual graph
layers. Therefore, we propose multi-layer graph learning from
multi-view data in this paper.

Low-dimensional embeddings of the nodes of a graph that
encode the structural information about the graph are useful
in graph-based spectral clustering and other graph analysis
tasks [13], [14]. A common technique to compute these
low-dimensional node embeddings is to perform a partial
eigenvalue decomposition of the graph underlying the data.
When dealing with multi-layer graphs, it is necessary to find
low-dimensional embeddings of the nodes common to all
the views that best capture the complementary information
available in different views. Assuming that the individual
graph layers of a multi-layer graph are available, there are
subspace learning methods that learn a common subspace by
merging the multiple subspaces computed from the individual
graph layers [15], [16]. In the context of multi-view canonical
correlation analysis (MCCA), [17] learns a common subspace
that is smooth on a known graph from multi-view data.

Instead, in this paper, we jointly learn a multi-layer graph
and common low-dimensional node embeddings from multi-
view data for multi-view clustering. Specifically, given M
views of data, we estimate a graph with M layers having K
components. The respective views of data are smooth on the
graph topology of individual layers that we learn. The graph
is restricted to a K-component graph to cluster data in K
groups by imposing rank constraints on the graph Laplacian
matrices of the individual graph layers. We propose an efficient
solver based on alternating minimization, each subproblem of
which is solved optimally. We evaluate the performance of the
proposed method for clustering on synthetic and real-world
datasets and compare them with state-of-the-art techniques
for multi-view clustering [15]–[17]. The results show that
our algorithm outperforms single-view clustering that ignores
information from different views and state-of-the-art multi-
view clustering methods.
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II. MULTI-LAYER GRAPHS

Consider a M -layer weighted and undirected graph G with
individual graph layers Gm = {V,Wm}, m = 1, 2, . . . ,M ,
where V = {v1, · · · vN} denotes the common vertex (or node)
set with N = |V| nodes and Wm ∈ RN×N denotes the
weighted adjacency matrix of the mth graph layer Gm. The
(i, j)th element of Wm contains a positive edge weight if two
nodes vi and vj are connected in Gm and is zero otherwise.
The adjacency matrix Wm is symmetric as Gm is undirected.
The degree of the nodes in Gm is defined as Wm1. The
combinatorial graph Laplacian matrix Lm ∈ RN×N for Gm is
defined as Lm = diag[Wm1]−Wm. By construction, Lm is
a symmetric, positive semidefinite matrix, and has a zero row
sum. The space of all the valid combinatorial graph Laplacian
matrices of size N is given by

L = {L ∈ SN+ | L1 = 0;Lij = Lji ≤ 0, ∀i 6= j}, (1)

in which the constraint Lii ≥ 0, i = 1, 2, · · · ,M is implicit.
Here, SN+ is the set of positive semidefinite matrices of size
N ×N .

The number of connected components in a graph is given by
the multiplicity of the zero eigenvalue of its graph Laplacian
matrix [14]. Thus the rank of the graph Laplacian matrix of a
K-component graph with N nodes is N−K. The eigenvectors
of the graph Laplacian matrix corresponding to the K zero
eigenvalues preserve the nodal connectivity information and
hence are used as low-dimensional node embeddings.

A signal (or dataset) indexed using the nodes of a graph is
referred to as a graph signal (or data). Consider M datasets
Xm ∈ RN×Dm , m = 1, 2, . . . ,M obtained from M ≥ 2
views of a common source. The nth row of Xm that contains
Dm features of the nth entity resides on the nth node of Gm.
That is, we interpret the M -view dataset as a graph signal
defined on the multi-layer graph G with each layer representing
a different view of the dataset.

We use smoothness to measure how well a signal matches
the underlying graph. A signal is said to be smooth over a
graph if the signal values residing on adjacent nodes having
large edge weights are similar. For the signal Xm ∈ RN×Dm

residing on Gm with the graph Laplacian matrix Lm, the
smoothness is measured using the total variation with respect
to the graph Gm, and is given by tr(XT

mLmXm) = tr(LmSm).
Here, Sm = XmXT

m is the sample data covariance matrix.

III. PROBLEM STATEMENT

In this work, we propose a rank-constrained multi-
layer graph learning technique for clustering multi-view
data. Specifically, we estimate the graph Laplacian matrices
{Lm}Mm=1 that best explain the M -view dataset {Xm}Mm=1 by
assuming that each view of the dataset is smooth on the graph
of that layer. By constraining the rank of Lm, m = 1, 2, . . . ,M
to R = N − K, we get K-component graph layers. Thus
partitioning the nodes into K clusters. Since the entities in
the multi-view dataset correspond to the same nodes in all the
views, there exists a common low-dimensional representation

of the nodes. To compute the common low-dimensional node
embeddings, we propose joint diagonalization of {Lm}Mm=1:

Lm = Udiag(λm)U
T
=
[

Q ?
] [ 0

?

] [
QT

?

]
,

(2)

for m = 1, 2, . . . ,M , where the columns of U
contain the joint eigenvectors (common factors)
shared by all the graph layers and the vector
λm = [λ1(Lm), λ2(Lm), · · · , λN (Lm)]T ∈ RN

+ contains
the eigenvalues of Lm. Here, λi(Lm) is the ith eigenvalue
of Lm, where we assume 0 = λ1(Lm) ≤ · · · ≤ λN (Lm).
The common eigenvectors corresponding to the K zero
eigenvalues of {Lm}Mm=1 are collected in Q ∈ RN×K .

To estimate the graph Laplacian matrices corresponding to
the graphs in each layer, we propose the following rank-
constrained multi-layer graph learning (RMGL) optimization
problem:

minimize
{Lm}Mm=1

M∑
m=1

tr(LmSm) + αm ‖Lm‖2F

subject to Lm ∈ L, tr(Lm) = N,

rank(Lm) = R, m = 1, · · · ,M, (3)

where recall that the set L, defined in (1), is the set of all
the valid combinatorial graph Laplacian matrices. The first
term in the objective function promotes smoothness of Xm

with respect to the graph corresponding to the mth layer. The
second term in the objective function with the tuning parameter
αm > 0 allows us to control the sparsity (i.e., the number
of nonzero entries) of Wm. The trace constraint of the form
tr(Lm) = 2‖vec(Wm)‖1 = N fixes the scale of the solution
and avoids the trivial solution (more details in Section IV-A).
The rank constraints on the Laplacian matrices promote K-
component graph layers.

For Lm ∈ SN+ , we have [18]

K∑
i=1

λi(Lm) = minimize
Q∈RN×K ,QTQ=IK

tr(QTLmQ). (4)

The optimal Q is given in (2). Using this property, the rank
constraints in (3) can be replaced with a sum-of-smallest-
eigenvalues regularizer in the objective function as

minimize
{Lm}Mm=1,Q

M∑
m=1

tr(LmSm) + αm ‖Lm‖2F + βmtr(QTLmQ)

subject to Lm ∈ L, tr(Lm) = N, m = 1, · · · ,M,

QTQ = IK , (5)

where for sufficiently large βm > 0, we achieve rank(Lm) =
N − K for m = 1, 2, . . . ,M . The columns of the isom-
etry Q ∈ RN×K form an orthonormal basis for the low-
dimensional subspace common to the M layers of the graph. In
particular, the nth row of Q corresponds to the K-dimensional
embedding of the nth node. The problem (5) is non-convex in
the variables {Lm}Mm=1and Q. In what follows, we present an



efficient algorithm to solve for the unknowns {Lm}Mm=1and Q
given the multi-view dataset {Sm}Mm=1.

IV. PROPOSED SOLVER

In this section, we solve the problem in (5) by alternatingly
minimizing it with respect to {Lm}Mm=1 and Q, while keeping
the other variable fixed.

A. Update of {Lm}Mm=1

Given Q, the problem (5) simplifies to the following convex
optimization problem

minimize
{Lm}Mm=1

M∑
m=1

tr(LmRm) + αm ‖Lm‖2F

subject to Lm ∈ L, tr(Lm) = N, m = 1, · · · ,M, (6)

where we have introduced the N × N matrix Rm = Sm +
βmQQT. It can be seen that the parameter βm regularizes the
data with the eigenvectors of the graph Laplacian. Since Lm is
a symmetric matrix, this quadratic program can be solved very
efficiently by solving only for the upper triangular entries of
Lm as described next.

Let us define a duplication matrix D ∈ RN2×V with
V = N(N + 1)/2 as DT =

∑
i≥j δijvec

T(Θij), where the
vector δij ∈ RV has 1 at position (j − 1)N + i− 1

2j(j − 1)
and zero elsewhere. The matrix Θij ∈ RN×N has −1 at the
positions (i, j) and (j, i), 1 at (i, i), and zero elsewhere. Let us
collect the absolute values of the V nonduplicated entries of
Lm in lm ∈ RV

+ . Then we have vec(Lm) = Dlm, m =
1, 2, . . . ,M, where vec(·) denotes the matrix vectorization
operator.

Using this transformation, we express the two equality
constraints in (6), namely, tr(Lm) = vec(I)Tvec(Lm) = N
and L1 = (1T ⊗ I)vec(Lm) = 0 as Clm = d, where
C = [DTvec(I),DT(1⊗I)]T ∈ RN+1×V and d = [N,0]T ∈
RN+1. Here, ⊗ denotes the Kronecker product. Similarly,
we express the first term in the objective function of (6) as
tr(LmRm) = vecT(Rm)vec(Lm) = rTmlm. The second term
in the objective function of (6) simplifies to αm‖Lm‖2F =
αmvec(Lm)Tvec(Lm) = 1

2 lTmdiag(pm)lm, where we have
used the fact that DTD is a positive definite diagonal matrix
to obtain diag(pm) = 2αmDTD. Now, we can simplify (6)
as

minimize
{lm}Mm=1

M∑
m=1

1

2
l
T
mdiag(pm)lm + r

T
mlm

subject to Clm = d, lm � 0, m = 1, · · · ,M. (7)

This is a special form of a convex quadratic program in which
the matrix associated with the quadratic term is diagonal. It
is computationally efficient and equivalent to solve for each
lm, m = 1, 2, . . . ,M separately as this convex program is
separable in these variables.

The Lagrangian function for the problem (7) associated to
the variable lm is given by

J (lm, λm, µm) =
1

2
l
T
mdiag(pm)lm

+ r
T
mlm + µ

T
m(d−Clm)− λ

T
mlm,

for m = 1, 2, . . . ,M , where µm ∈ RN+1 and λm ∈ RV are
the Lagrange multipliers corresponding to the equality and
inequality constraints, respectively. The Karush-Kuhn-Tucker
(KKT) conditions are given by

diag(pm)l?m + rm −C
T
µ?

m − λ?
m = 0,

Cl?m = d, l?m � 0, λ?
m � l?m = 0,

where � denotes the elementwise Hadarmard product. Elimi-
nating the variable λ?

m and solving for l?m, we get l?m(µ?
m) ={

diag−1(pm)[CTµ?
m − rm]

}
+
, where {·}+ denotes the el-

ementwise projection onto the nonnegative orthant. Using
l?m(µ?

m) in the second KKT condition, we can compute µ?
m

iteratively as

l(k)m =
{

diag−1(pm)[C
T
µ(k)

m − rm]
}
+
, (8)

µ(k+1)
m = µ(k)

m − ρ[Cl(k)m − d], (9)

where ρ > 0 is the step size. We initialize the iterations with
µ

(0)
m . The computational complexity of these iterations is dom-

inated by the matrix-vector multiplication. Since C is sparse
with N(N+1) non-zero entries, the above iterative procedure
approximately costs order N2 flops. For M variables, the total
computation cost is approximately order MN2 flops.

B. Update of Q

Given {Lm}Mm=1, (5) reduces to the following eigenvalue
problem

minimize
Q∈RN×K

tr(QTLQ)

subject to QTQ = IK and L =

M∑
m=1

βmLm. (10)

The optimal Q is given by the K eigenvectors corresponding
to the K smallest eigenvalues of L =

∑M
m=1 βmLm. Comput-

ing this partial eigendecomposition approximately costs KN2

flops [19].
The complete alternating minimization procedure is summa-

rized as Algorithm 1. It approximately costs order (M+K)N2

flops per iteration. Furthermore, it can be shown that each limit
of the sequence of updates of the optimization problems in (7)
and (10) satisfy the KKT conditions of (5).

V. NUMERICAL EXPERIMENTS

In this section, we evaluate our framework in terms of
clustering performance on a synthetically generated dataset
and two real-world datasets. We use normalized mutual in-
formation (NMI) as a measure to assess the clustering per-
formance. We compare the clustering performances of the
proposed method RMGL with both common baseline methods
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Fig. 1: (a) Ground truth graphs. (b) Reconstructed
graphs. (c) Node embeddings.

(a) (b)

Fig. 2: NMI. (a) UCI hand-written digits (b) COIL-20 datasets.

and state-of-the-art multi-view spectral clustering methods.
The single-view graph learning method based on signal rep-
resentation (GL-SigRep) in [6] serves as our first baseline
method. We learn the graph layers independently for each
of the views available using GL-SigRep. We also learn
a graph Laplacian matrix by giving the concatenated views
X ∈ RN×

∑M
m=1 Dm as input to GL-SigRep. We refer to the

second baseline method that uses concatenated data as input
as GL-SigRep(C). Spectral clustering is then performed to
find the clusters on the graph Laplacian matrices estimated
using the above mentioned two methods. We also com-
pare our method with state-of-the-art methods for multi-view
spectral clustering, which are based on a two-step approach
of graph learning followed by subspace merging. Graph-
regularized dual multi-view CCA (GD-MCCA) [17] learns a
low-dimensional representation of the data common to all
the views by minimizing the distance between the canonical
variables and the common low-dimensional representations
while leveraging a graph structure of the common source.
We compute the common graph required by GD-MCCA as

Algorithm 1 Rank-constrained multi-layer graph learning

1: function RMGL({pm, rm}Mm=1, C, D, d, K, Tol, ρ,
MaxIter)

2: Initialize k ← 0
3: while k < MaxIter do
4: for m = 1 to M do
5: Initialize µm ← 0
6: while ‖Clm − d‖2 < Tol do
7: lm ←

{
diag−1(pm)[CTµm − rm]

}
+

8: µm ← µm − ρ[Clm − d]

9: Lm ← mat(Dlm)
. mat is the inverse vectorization operator.

10: L←
∑M

m=1 βmLm

11: Q← eigs(L,K)
. eigs computes the eigenvectors associated to the K smallest

eigenvalues of the matrix argument.
12: k ← k + 1

return {Lm}Mm=1 and Q

in [17], by taking each of the affinity matrices D−1m XmXT
m

as the common graph. Here, Dm is the degree matrix of the
similarity graph XmXT

m. We finally consider the common
graph giving the best results for comparison. The multi-view
spectral clustering methods, SC-GED [15] and SC-ML [16],
obtain the common node embeddings by computing a joint
spectrum via a generalized eigendecomposition and merging
the node embeddings from multiple graph layers, respectively.
We give the independent graph layers estimated from [6]
as input to SC-GED and SC-ML to find the common node
embeddings and perform spectral clustering.

We first curate a synthetic dataset to illustrate the merit
of the proposed method through a pedagogical approach. We
construct a 3-layer graph, as shown in Fig. 1(a). Each of
the graph layers consists of N = 100 nodes with an equal
number of samples from four classes, indicated by different
colors. The graph layers are so constructed that they carry
complementary information that none of the individual graphs
provide. Each layer has a different class of nodes disconnected
from the rest of the nodes that have inter-class connections.
The denser within-class connections than the inter-class con-
nections present in all the views convey that the nodes with
different colors belong to different classes. We generate data
Xm ∈ R100×15, m = 1, 2, 3 by taking the eigenvectors
corresponding to the 15 smallest eigenvalues of the individual
graph Laplacian matrices and corrupting it with zero-mean
additive white Gaussian noise of variance 0.01. The estimated
graph layers with K-components from the proposed method
RMGL are shown in Fig. 1(b). From Fig. 1(c), we can see
that the embeddings obtained using the three estimated graph
layers using GL-SigRep fail to incorporate the combined
information from different views. In contrast, RMGL assigns
the same node representations to the points belonging to one
class and hence are better clustered by our proposed method
than the representations obtained using SC-GED, SC-ML, and
GD-MCCA.
RMGL’s performance on the real datasets, UCI hand-written

digits [20] and COIL-20 [21], shows its merit more accurately.
The UCI dataset consists of 200 instances of images of the 10
digits 0 to 9. We consider six different views of this data as



(a) RMGL

(c) SC-GED (d) GD-MCCA

(d) SC-ML

Fig. 3: Node embeddings of the UCI hand-written digits
dataset.

in [17] with N = 2000, D1 = 216, D2 = 76, D3 = 64, D4 =
6, D5 = 240, and D6 = 47. The COIL-20 dataset is an image
dataset consisting of 20 classes of objects with 72 images
of each object captured at different angles. We construct three
views of this data related to the local binary pattern, histogram
of oriented gradients, and pixel values of resized images with
N = 1440, D1 = 59, D2 = 36, and D3 = 1024.

With the different views of data taken as input, we estimate
{Lm}Mm=1 and Q. The rows of Q are then given as input
to the k-means algorithm for clustering. We also perform
spectral clustering on {Lm}Mm=1. The accuracy of the clusters
obtained using these can be treated as a measure of the
correctness of the estimated graph. The parameters involved
in the different methods considered are chosen to obtain the
best possible NMI. The values of {βm}Mm=1, for RMGL, can
be chosen according to the importance of the available views
by choosing a higher value of βm for a view m that is
more informative. Our model gives the best results for the
following choice of parameters: αm = 100, m = 1, . . . , 6,
β1 = β2 = β3 = 2, and β4 = 20, β5 = 7, β6 = 1 for the
UCI dataset. For the COIL-20 dataset, we use αm = 100,
m = 1, 2, 3, and β1 = 12, β2 = 2, β3 = 15. The bar plot in
Fig. 2 shows the NMI values averaged over 20 experiments.
The NMI variance using the proposed and competing methods
is very small (about 10−6), and hence not shown. The NMI
scores of the different methods in Fig. 2 suggest that using
Q from RMGL as an input to the k-means algorithm gives
the best clustering accuracy when compared to the other
considered methods (including performing spectral clustering
on the estimated graph layers either from RMGL, GL-SigRep
or GL-SigRep(C)). Fig. 3 shows the node embeddings
corresponding to the 2000 samples from the ten classes of
data in the UCI dataset set. We show the two-dimensional
node representations obtained from the last two columns of
the common K-dimensional subspaces computed using RMGL,
SC-GED, SC-ML, GD-MCCA. The embeddings obtained from
RMGL show better separability, with the node embeddings from
the same cluster concentrated and those from different clusters
far apart.

VI. CONCLUSIONS

We developed a framework for multi-view clustering, where
we simultaneously learn a multi-layer graph with a common
vertex set and a low-dimensional representation for the nodes

common to all the views. We presented an efficient solver
based on an alternating minimization procedure to solve the
proposed non-convex optimization problem. We demonstrated
via numerical experiments on synthetic and real datasets that
the proposed method performs better than the existing multi-
view clustering methods based on CCA or merging the node
embeddings of the individual graph layers.
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