

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

PeakRNN and StatsRNN: Dynamic Pruning in Recurrent Neural Networks

Jelcicova, Zuzana; Jones, Rasmus Thomas; Blix, David Thorn; Verhelst, Marian; Sparsø, Jens

Published in:
Proceedings of 29

th
 European Signal Processing Conference

Link to article, DOI:
10.23919/EUSIPCO54536.2021.9616033

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jelcicova, Z., Jones, R. T., Blix, D. T., Verhelst, M., & Sparsø, J. (2022). PeakRNN and StatsRNN: Dynamic
Pruning in Recurrent Neural Networks. In Proceedings of 29

th
 European Signal Processing Conference IEEE.

https://doi.org/10.23919/EUSIPCO54536.2021.9616033

https://doi.org/10.23919/EUSIPCO54536.2021.9616033
https://orbit.dtu.dk/en/publications/ecedeca3-5620-4d72-9975-f424ab05a6ab
https://doi.org/10.23919/EUSIPCO54536.2021.9616033

PeakRNN and StatsRNN: Dynamic Pruning in
Recurrent Neural Networks

Zuzana Jelčicová1,2, Rasmus Jones1, David Thorn Blix1, Marian Verhelst3, and Jens Sparsø2

1 Demant A/S, Kongebakken 9, 2765 Smørum, DK
zuje@demant.com, rajn@demant.com, dbli@demant.com

2 Technical University of Denmark, Richard Petersens Plads, Building 322, 2800 Kgs. Lyngby, DK
zuje@dtu.dk, jspa@dtu.dk

3 Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, BE
marian.verhelst@kuleuven.be

Abstract—This paper introduces two dynamic real-time prun-
ing techniques PeakRNN and StatsRNN for reducing costly mul-
tiplications and memory accesses in recurrent neural networks.
The methods are demonstrated on a gated recurrent unit in
a multi-layer network, solving a single-channel speech enhance-
ment task with a wide variety of real-world acoustic environments
and speakers. The performance is compared against the baseline
gated recurrent unit and the DeltaRNN method. Compared to
the unprocessed speech, the SNR and Perceptual Evaluation
of Speech Quality were on average improved by 8.11 dB and
0.43 MOS-LQO, respectively. Additionally, the two proposed
methods outperformed DeltaRNN by 0.7 dB and 0.11 MOS-LQO
in the two objective measures, while using the same computa-
tional budget per timestep and reducing the original operations
by 88%. Furthermore, PeakRNN is fully deterministic, i.e. it
is always known in advance how many computations will be
executed. Such worst-case guarantees are crucial for real-time
acoustics applications.

Index Terms— RNN, determinism, statistics, peaks, threshold,
single-channel speech enhancement, hearing instruments

I. INTRODUCTION

Speech enhancement (SE) is a classical problem in signal
processing that focuses on attenuating background noise from
a speech signal. Traditionally, statistical methods such as the
Wiener filter [1], non-Negative Matrix Factorization [2], and
Short-Time Spectral Amplitude [3] have been used to solve the
single-channel SE task. Applications such as hearing instru-
ments (HIs), (wireless) headsets, and mobile communications
require algorithms that are able to handle a wide range of noise
environments and speakers to be useful in real-life situations.
However, such signals do not follow normal distributions and
are often non-stationary [4], i.e. the statistical structure of the
signal changes over time, which imposes a challenge for the
traditional methods [5]. Deep neural networks (DNNs) are
able to capture non-linear and complex relationships, and have
proved successful in SE applications [6], [7], outperforming
classical signal processing methods.

SE is a challenging problem that is usually solved by
complex DNN models using several hidden layers consisting
of hundreds to thousands of neurons, resulting in a model with
millions of parameters. Often such models can, however, be
pruned, leading to computational savings that are crucial for
low-power edge devices such as HIs. Static pruning [8] results

in a smaller dense model where, however, the capabilities
of the pruned neurons and weights are irreversibly gone.
Moreover, static pruning cannot capture the importance of
neurons and weights that are highly input-dependent. Dynamic
approaches [9], on the other hand, enable to use parts of the
NN relevant for the current input. Yet these methods are often
complex, and the deployment hence still remains challenging.

In this work, we propose two dynamic pruning techniques,
called PeakRNN and StatsRNN, which during inference re-
duce the number of memory accesses (MAs) and multiply-
accumulates (MACs) dynamically in a data-driven way. The
reduction is demonstrated on a SE task using a gated re-
current unit (GRU) hidden layer in a three-layer network.
The evaluations are based on the computational costs and
objective measures such as SNR and Perceptual Evaluation of
Speech Quality (PESQ). While PeakRNN offers determinism
and robustness without any prior data analysis, StatsRNN
approaches pruning by exploring the underlying statistical
properties of the data. These two pruning techniques can be
used to find an optimal model and they outperform the current
state-of-the-art DeltaRNN [10] technique.

II. RELATED WORK

Recurrent neural networks (RNNs) and their variants, such
as long short-term memory (LSTM) units [11] and GRU
[12], are suited for time-series tasks since they are able to
model complex temporal structures. GRUs are computationally
more efficient and thus preferred over LSTMs in real-time
SE tasks [13]. However, they still require many matrix-vector
multiplications and memory accesses. Works targeting single-
channel SE primarily focus on a high-level exploration, i.e.
comparing different objective measures for speech quality
and intelligibility without considering the complexity of the
proposed algorithms.

In [14] the authors introduce FastGRNNs that use a scalar
weighted residual connection for each coordinate of the hidden
state h. They have lower training times and prediction costs, as
well as 2-4x fewer parameters than LSTMs and GRUs, while
matching the state-of-the-art prediction accuracies. However,
this static method does not consider temporal dependencies
in data. DeltaRNN [10] addresses the computational issues

by exploiting the temporal stability of inputs and activations,
i.e. by caching neuron activations, operations can be skipped
where no significant changes occur from the previous update.
This data-driven approach saves fetches of entire columns of
weight matrices, leading to substantial speedups of 5.7-100x
for a RNN on classification tasks with negligible accuracy loss.

Our work builds on and outperforms the idea of DeltaRNNs
with novel PeakRNN and StatsRNN techniques. The algo-
rithms are demonstrated on the single-channel SE regression
task.

III. PEAK RNN ALGORITHM

Similar to DeltaRNN, the objective of PeakRNN is to trans-
form a dense matrix-vector multiplication into a highly-sparse
matrix-vector multiplication to save both MAC operations and,
above all, MAs. These two methods therefore share the under-
lying computations targeting GRU, equations (1)-(12), that are
detailed in [10]. The actual difference arises in selecting the
elements for computations (1)-(4). DeltaRNN applies a single
threshold θ on both the input vector x and the activation vector
h, resulting in a variable number of required computations. In
contrast, PeakRNN selects a desired number of peak elements
Np from both vectors individually in every timestep. Hence,
unlike DeltaRNN where the number of computations is non-
deterministic, PeakRNN saves computations in a deterministic
manner as it is always known in advance how many operations
will be executed. Therefore, it provides worst-case execution
guarantees, which is a crucial aspect in real-time low-power
devices, and not ensured by DeltaRNN.

x̂(t) =

{
x(t) if |x(t)− x̂(t− 1)| among Np

x̂(t− 1) otherwise
(1)

ĥ(t− 1) =

{
h(t− 1) if |h(t− 1)− ĥ(t− 2)| among Np

ĥ(t− 2) otherwise
(2)

∆x(t) =

{
x(t)− x̂(t− 1) if |x(t)− x̂(t− 1)| among Np

0 otherwise
(3)

∆h(t− 1) =

{
h(t− 1)− ĥ(t− 2) if |h(t− 1)− ĥ(t− 2)| among Np

0 otherwise
(4)

Mr(t) = Wxr∆x(t) +Whr∆h(t− 1) +Mr(t− 1) (5)

Mu(t) = Wxu∆x(t) +Whu∆h(t− 1) +Mu(t− 1) (6)

Mxc(t) = Wxc∆x(t) +Mxc(t− 1) (7)

Mhc(t) = Whc∆h(t− 1) +Mhc(t− 1) (8)

r(t) = σ[Mr(t)] (9)

u(t) = σ[Mu(t)] (10)

c(t) = tanh[Mxc(t) + r(t)�Mhc(t)] (11)

h(t) = u(t)� h(t− 1) + (1− u(t))� c(t) (12)

Moreover, PeakRNN is robust to the variations of the input
data as the algorithm selects the top elements regardless of the
threshold. Additionally, the number of peaks for the x and h
vectors can either be equal or different. In our experiments,
we used the same number of peaks for both vectors, but this
combination can be optimized depending on a given task.
The top Np elements might be selected using sorting, but
an alternative solution is to approximate Np elements by

exploring the underlying statistical properties of the data as
introduced in Section IV.

Table I provides an overview of the theoretical estimations
of MACs and MAs required for a GRU every timestep as
these, particularly MAs, are among the most costly operations
[15]. These estimations enable us to compare DeltaRNN and
PeakRNN on equal terms. The calculations are derived from
equations (1) - (12). Nx and Nh refer to the dimensionality
of an input vector x and activation vector h, respectively. ox
and oh, called occupancy [10], correspond to the fraction of
non-zero values of an input vector x and activation vector
h, respectively. These fractions define how many operations
will be executed. As it can be seen in Table I, there is MA
overhead compared to GRU due to keeping track of additional
states. However, these excess operations are negligible for
huge RNNs as the MAs for weights scale approximately
quadratically. Therefore, significant savings and increased
speedup can be achieved with a sparse occupancy. This is
pronounced even more for MACs, and the results are presented
in Section VI.

TABLE I: Theoretical cost calculations of MACs and MAs.

GRU DeltaRNN/PeakRNN Equations

MACs (x + h) 3(NxNh) +
3(NhNh)

ox[3(NxNh)] +
oh[3(NhNh)] (5) - (8)

MACs (pointwise) 3Nh 3Nh (11) - (12)
MAs

(x+h weights)
3(NxNh) +
3(NhNh)

ox[3(NxNh)] +
oh[3(NhNh)] (5) - (8)

MAs (x+h read) Nx + Nh 2Nx + 2Nh (1) - (4)
MAs (h write) Nh Nh (12)

MAs (M states read) - 4Nh (5) - (8)
MAs (M states write) - 4Nh (5) - (8)

MAs (x̂ + ĥ write) - oxNx +ohNh (1) - (2)

IV. STATISTICAL RNN ALGORITHM

StatsRNN finds the top Np elements by exploiting the statis-
tical properties of the |x(t)− x̂(t−1)| and |h(t−1)− ĥ(t−2)|
computations that determine whether the elements should be
zeroed out. We hypothesized that our training dataset is repre-
sentative of our SE application. Consequently, we can assume
that the underlying statistical distributions within the network
are a good approximation of distributions in the application.
We created an average histogram with 256 logarithmic bins
for the x and h computations separately, based on the entire
training dataset. Figure 1 shows a histogram example for
|x(t)−x̂(t−1)| (|h(t−1)−ĥ(t−2)| has a similar distribution)
where it can be observed that the data is correlated. Also, due
to ReLU in the first fully connected (FC) layer, a lot of values
are zero, ∼31% and 21% for x and h, respectively, which
enables to exploit sparsity to a high degree. After training, the
threshold can be statistically determined for x and h separately
using the bin boundaries, i.e. selecting a boundary where all
the bins to its right (greater values) represent the percentage
of elements (ox and oh) equivalent to the number of peak
elements (PeakRNN) that should be processed. This approach
preserves the idea of PeakRNN and eliminates sorting. In the
presented experiments, the same percentage of top elements
to extract was set for x and h.

Fig. 1: A zoomed view on a part of the histogram with logarithmic
bins for the delta calculation |x(t)−x̂(t−1)| from the training dataset.
The x-axis represents bin boundaries that are used to determine x and
h thresholds. The thin black vertical line to the very left corresponds
to the first bin that contains ∼31% of zeros.

The StatsRNN approach was applied to the entire test
dataset, trying to obtain various percentages of x and h
elements individually, varying from 50% down to 1%. Due
to a big variety of scenes, some environments naturally de-
viate from the required percentage more while others less.
The smallest difference between the expected and the actual
obtained percentage was only 0.05% (Quiet Street), where, on
average, 40.05% of the h elements were processed instead
of 40%. The biggest outliers were Pink and, in particular,
White noise, where ∼31.65% of the h vector elements was
processed instead of 50%. All the details about the datasets
are described in Section V-C. StatsRNN analytically defines
a threshold for x and h individually. This is a very important
property since the vectors have different sparsity as also
shown in [10], and their individual handling might contribute
to additional improvements. Therefore, exploiting a priori
statistical knowledge about the data will lead to a better
and more deterministic algorithm with consistent performance
compared to DeltaRNN. Furthermore, the estimations provided
in Table I can be directly used for StatsRNN as well. Instead
of Np in equations (1)-(4), two statistically derived thresholds
Θx and Θh will be applied for StatsRNN (a single threshold
Θ in original DeltaRNN [10]).

V. EXPERIMENTAL SETUP

This section describes the entire system setup used for
performing the experiments.

A. Hearing-instrument application

Figure 2 illustrates a simplified system extracted from a real
HI setup where the DNN replaces a typical noise reduction
module for obtaining postfilter gain. Firstly, the Analysis Filter
Bank applies a 1024-point FFT and a square-root Hanning
window on the 20 kHz microphone signal (mic), resulting
in 512 frequency sub-bands and downsampling to 40 Hz (a
new frame every 25 ms, no overlapping). The output is then
passed to the DNN that will learn to estimate a postfilter gain

(pfGain) to be applied on the original signal. Finally, the Syn-
thesis Filter Bank reconstructs a wideband signal and passes it
to the speaker. The proposed techniques are demonstrated on a
single microphone but they can be also applied in a setup with
a microphone array (e.g. HIs with two microphones). In such
case, the Minimum Variance Distortionless Response (MVDR)
Beamformer could be used for multi-channel processing where
interferences from undesired directions would be attenuated.

mic
X

pfGain

MVDR
Beamformer

Sy
nt

he
si

s
Fi

lte
r B

an
k

DNN..
.

..

.

A
na

ly
si

s
 F

ilt
er

 B
an

k

Fig. 2: Full system overview representing simplified internals of a
HI. The highlighted parts (black) are used for the single-channel SE
experiments.

B. DNN architecture

The DNN architecture used in the experiments consists of
three layers: FC-GRU-FC, each having 512 output neurons,
with 512 inputs to the first FC layer. The first FC layer is
followed by ReLU activation function, while the GRU layer
uses tanh and sigmoid activation functions. The final output
of the network are 512 pfGain values that are applied on
the original signal. The GRU component is replaced with
DeltaRNN, PeakRNN, and StatsRNN during the experiments.

C. Dataset

The DNN input is a mixed signal y, i.e. clean speech cor-
rupted with noise, constructed by adding 30-second segments
of noise n and clean speech s together (y = s+ n). The 30-
second segments contain one to three speakers with a maxi-
mum gap of 300 ms and up to 30% overlap, creating seemingly
natural flow and tempo of a conversation. The speech was
obtained from the VCTK Corpus [16] and Akustiske Database
for Dansk [17]. Fifteen different types of audio environments
(referred to as background noise) were used, reflecting the
most relevant acoustic situations that people are exposed to in
the real world in order to obtain the required variations in SNR
estimates. Eight scenes (Beach, Busy Street, Park, Pedestrian
Zone, Quiet Street, Shopping Centre, Train Station, Woodland)
were obtained from [18], five scenes are a part of the internal
database of the Demant company (Bar, Cafe, Canteen, Car,
Office), and Pink and White stationary noises were simulated.
The entire dataset contains ∼25 hours (left and right channels
together) of mixed signal, divided into training (∼19.5 h), test,
and validation (each ∼2.7 h) subsets. Each of the three subsets
is unique, i.e. the speakers and the background noise sections
are not shared across the subsets.

The unprocessed speech has SNR and PESQ of 4.39 dB
and 1.85 MOS-LQO (Mean Opinion Score - Listening Quality

Objective) [19], respectively. The starting SNRs for the scenes
in the test dataset vary between -12.7 dB (e.g. White noise) to
14.4 dB (e.g. Park), with most acoustic scenes having SNR up
to 8 dB (80%). The high SNRs are present in only a few cases
to cover the necessary variations as mentioned before.

D. Training

The DNN is trained on a linear ideal ratio mask (IRM)
where the mask value is a continuous gain between zero and
one. The IRM is defined as follows:

IRM =

(
|s(t, f)|

|s(t, f)|+ |n(t, f)|

)
(13)

The s(t, f) and n(t, f) represent the clean speech and noise,
respectively, with time frame t and frequency channel f . The
mean squared error between the target IRM and the denoised
speech is used as the loss function. The final DNN was
trained using a batch size of 128 and a sequence length of
100 samples, which corresponds to 2.5 seconds. The DNN
with a GRU layer was trained in Tensorflow using 32-bit
floating-point, and the weights and biases were transferred
to DeltaRNN, PeakRNN, and StatsRNN (further referred to
as DeltaGRU, PeakGRU, and StatsGRU) for inference. The
results are presented in Section VI. Transferring the learned
parameters replaces computationally expensive and time de-
manding training from scratch for each configuration, and
enables to compare all the methods in a fair manner. The
DeltaGRU, PeakGRU, and StatsGRU networks were finally
also retrained using transfer learning, where the transferred
GRU model served as a starting point. This approach is
discussed at the end of Section VI.

VI. RESULTS AND DISCUSSION

Figure 3 shows the improvement of the different GRU
implementations to unprocessed speech in SNR and PESQ
for decreasing percentage of MAC operations per timestep.
It also provides a zoomed view on a part of the plot dis-
cussed in this section. The annotations on the PeakGRU,
DeltaGRU, and StatsGRU curves describe the tested number
of processed peaks (512-11), thresholds (0.0-0.04) and the
desired percentages of elements to extract (50-1), respectively.
The GRU performance of 8.11 dB and 0.43 MOS-LQO in (a)
and (b), respectively, is shown as baseline with 100% MAC
operations, corresponding to 1.5744 MOps. The same number
of operations is also required for MAs. Only a plot for MAC
results is presented since MA reduction is done in the same
linear manner and its diagram would, therefore, look almost
the same (max ∼0.4% more MAs from the original number
of operations). Due to the MA overhead estimated in Table
I, all the three modified GRU algorithms have a total of
∼1.581 MOps when processing all features. The computations
are based on an overall scene, i.e. an average across all the
acoustic environments and x and h subsets. However, a similar
trend can be also observed for the individual scenes, i.e.
PeakGRU and StatsGRU outperforming DeltaGRU. The only
scene where DeltaGRU has subtly better performance is White
noise, and it is on par with PeakGRU for Pink noise and Busy

Street scenes. The performance of StatsGRU is very similar
to PeakGRU as it approximates the number of top elements to
be processed. The largest SNR improvement on average was
obtained for the White noise environment (∼15.72 dB), while
the smallest one for the Office scene (∼4.26 dB).

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0
Operations (%)

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2

Im
pr

ov
em

en
t

(d
B)

512 461 411 361 311 261 211 161 1111019181
71

61

51

41

31

21

11

0.0 0.001 0.003 0.005
0.007

0.009
0.01

0.011
0.012

0.0130.014
0.015

0.016
0.0170.018

0.0190.02

0.0220.024
0.026

0.028
0.03

0.04

50 40 30 20 191715 13 11
10

8

6

4

1

GRU
PeakGRU
DeltaGRU
StatsGRU 5101520253035406.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2 161 11110191
81

71
61

51

41

31

0.005
0.007

0.009
0.01

0.011
0.012

0.013
0.014

0.015
0.016
0.0170.018

0.019

30 20 1917
15 13 11

10

8

6

(a) SNR improvement vs MACs (unprocessed speech = 4.39 dB).

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0
Operations (%)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Im
pr

ov
em

en
t

(M
O

S-
LQ

O
)

512 461 411 361 311 261 211
161

11110191
81

71
61

51

41

31

21

11

0.0 0.001 0.003
0.005

0.007

0.009
0.01

0.011
0.012

0.013
0.014

0.015
0.0160.017

0.018
0.0190.02

0.022
0.024
0.026
0.028

0.03

0.04

50 40 30 20 191715 13 1110
8

6

4

1

GRU
PeakGRU
DeltaGRU
StatsGRU 5101520253035400.24

0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

161
11110191

81
71

61

51

41

31

0.005

0.007

0.009
0.01

0.011
0.012

0.013
0.014

0.015
0.016
0.017
0.018
0.019

30 20 191715 13
1110

8

6

4

(b) PESQ improvement vs MACs (unprocessed speech = 1.85 MOS-LQO).

Fig. 3: Plots (a) and (b) show the percentage of executed MACs with
respect to improvement in SNR/PESQ (including a zoomed part of the
plot). 100% of MACs corresponds to the baseline GRU illustrated as
a constant horizontal line, i.e. the x-axis does not apply to it. The data
labels annotated on the lines represent the number of processed peaks,
thresholds, and the desired % of elements to extract for PeakGRU,
DeltaGRU, and StatsGRU, respectively. The dashed lines show the
benefit of retraining that further optimizes the performance.

As it can be observed in Figure 3(a), all the methods have
equal and no loss in performance down to ∼30%, correspond-
ing to ∼0.4723 MOps and thus reducing the computations
by 70%. DeltaGRU, and likewise StatsGRU, already saves
25% of computations with Θ=0.0 without any SNR/PESQ
degradation due to the ReLU in the first FC layer that produces
a sparse input to the GRU. However, with decreasing % of
computations, the objective metrics start to noticeably degrade
especially for DeltaGRU, while PeakGRU and StatsGRU have
a less steep decrease. StatsGRU and PeakGRU are aligned
regarding SNR, and StatsGRU has slightly better PESQ. This
behavior can be explained by the fact that StatsGRU selects a
specific percentage of x and h separately across the entire
dataset, while PeakGRU does so every timestep, and thus
sometimes chooses less significant values, which is subtly
reflected in speech quality. At ∼7.8 dB SNR improvement,

the two new methods reduce the computations down to ∼12%,
which is a reduction by almost a factor of 2 compared to∼21%
for DeltaGRU. Even at 7 dB, which represents an acceptable
loss of 1 dB, PeakGRU and StatsGRU execute on average 7%
of operations while DeltaGRU 11%. Similarly, a better PESQ
performance of the two proposed techniques can be seen in
Figure 3(b). On the other hand, if the number of operations is
fixed at 12%, PeakGRU and StatsGRU outperform DeltaGRU
by 0.7 dB on average. Figure 4 further presents the results per
scene, where the SNR improvements for each of the methods
are plotted as overlapping bars.

Ba
r

 (
2.

95
dB

)
Be

ac
h

 (
5.

25
dB

)
Bu

sy
 S

tr
ee

t
 (

5.
4d

B)
Ca

fe
 (

4.
42

dB
)

Ca
nt

ee
n

 (
3.

65
dB

)
Ca

r
 (

10
.4

7d
B)

O
ff

ic
e

 (
3.

2d
B)

Pa
rk

 (
6.

31
dB

)
Pe

de
st

. Z
on

e
 (

5.
55

dB
)

Pi
nk

 N
oi

se
 (

-4
.2

2d
B)

Q
ui

et
 S

tr
ee

t
 (

5.
67

dB
)

Sh
op

. C
en

tr
e

 (
3.

14
dB

)
Tr

ai
n

St
at

io
n

 (
3.

44
dB

)
W

hi
te

 N
oi

se
 (

-9
.5

9d
B)

W
oo

dl
an

d
 (

5.
17

dB
)0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Im
pr

ov
em

en
t

(d
B)

GRU
PeakGRU
DeltaGRU
StatsGRU

Fig. 4: SNR improvement per scene under the fixed number of
operations per timestep (12%) plotted as overlapping bars, with
PeakGRU and StatsGRU outperforming DeltaGRU by 0.7 dB on
average. The configurations use 61 peaks, Θ=0.016, and top 10%
of elements for PeakGRU, DeltaGRU, and StatsGRU, respectively.
The x-axis denotes each tested scene along with its initial average
SNR. PeakGRU is on par with GRU, and StatsGRU with DeltaGRU
for the Car and Office scene, respectively.

Retraining the models further optimizes the performance,
especially for the configurations with high thresholds/many
peaks skipped. This is illustrated with dashed lines in Figure 3,
where all the three methods benefit comparably from transfer
learning. Therefore, the same relative gains for DeltaRNN,
PeakRNN, and StatsRNN remain valid.

Future work further explores the most optimal ratio between
x and h sparsities, since the best model might not necessarily
use the same threshold/number of peaks for both. This could
be done by making the sparsity ratio parameter differentiable,
such that it can be trained together with the network itself.

VII. CONCLUSION

This paper introduced two new pruning techniques demon-
strated on a single-channel SE task using complex environ-
ments and big variety of speakers. The results proved that
computations in a RNN can be efficiently reduced nearly 2x
compared to the state-of-the-art DeltaRNN while maintaining
sufficient quality of objective measures. In addition, reducing
the SNR quality by only ∼0.3 dB saves 88% of operations
in PeakRNN and StatsRNN, while the same reduction in
DeltaRNN is achieved by degrading SNR by 1 dB. Further-
more, PeakRNN is deterministic and thus provides worst-case

execution guarantees required by real-time applications. If the
deterministic aspect can be slightly relaxed, further savings can
be achieved by StatsRNN using a statistical approximation.
Overall, both algorithms are hence suitable for resource-
constrained embedded devices such as HIs.

ACKNOWLEDGMENT

We would like to thank Asger Heidemann Andersen and
Robert Rehr for all their advice, help, and knowledge they
provided.

REFERENCES

[1] P. C. Loizou, Speech Enhancement: Theory and Practice, 2nd ed. USA:
CRC Press, Inc., 2013.

[2] Y. Wang, A. Narayanan, and D. Wang, “On Training Targets for
Supervised Speech Separation,” IEEE/ACM Trans. Audio, Speech and
Lang. Proc., vol. 22, no. 12, p. 1849–1858, Dec. 2014.

[3] Y. Ephraim and D. Malah, “Speech Enhancement Using a Minimum
Mean-Square Error Log-Spectral Amplitude Estimator,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 33, no. 2, pp.
443–445, 1985.

[4] A. Meynard and B. Torresani, “Spectral Analysis for Nonstationary
Audio,” IEEE/ACM Trans. Audio, Speech and Lang. Proc., vol. 26,
no. 12, p. 2371–2380, Dec. 2018.

[5] Z. Duan, G. Mysore, and P. Smaragdis, “Speech Enhancement by
Online Non-negative Spectrogram Decomposition in Non-stationary
Noise Environments,” in Proc. Interspeech 2012, Dec. 2012, pp. 594–
597.

[6] Y. Wang, A. Narayanan, and D. Wang, “On Training Targets for
Supervised Speech Separation,” IEEE/ACM Trans. Audio, Speech and
Lang. Proc., vol. 22, no. 12, p. 1849–1858, Dec. 2014.

[7] Y. Xu, J. Du, L. Dai, and C. Lee, “A Regression Approach to Speech
Enhancement Based on Deep Neural Networks,” IEEE/ACM Trans.
Audio, Speech and Lang. Proc., vol. 23, no. 1, pp. 7–19, 2015.

[8] I. Fedorov, M. Stamenovic, C. Jensen, L.-C. Yang, A. Mandell, Y. Gan,
M. Mattina, and P. N. Whatmough, “TinyLSTMs: Efficient Neural
Speech Enhancement for Hearing Aids,” 2020.

[9] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime Neural Pruning,” in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017, pp. 2181–
2191.

[10] D. Neil, J. H. Lee, T. Delbruck, and S.-C. Liu, “Delta Networks for
Optimized Recurrent Network Computation,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 70, 2017, pp. 2584–2593.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[12] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” CoRR, vol. abs/1406.1078,
2014.

[13] J.-M. Valin, “A Hybrid DSP/Deep Learning Approach to Real-Time
Full-Band Speech Enhancement,” in 2018 IEEE 20th International
Workshop on Multimedia Signal Processing (MMSP), 2018, pp. 1–5.

[14] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma,
“FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated
Recurrent Neural Network,” in NeurIPS, 2018.

[15] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), vol. 57, Feb 2014, pp. 10–14.

[16] C. Veaux, J. Yamagishi, and K. Macdonald, “CSTR VCTK Corpus:
English Multi-speaker Corpus for CSTR Voice Cloning Toolkit,” 2017.

[17] G. Andersen, “Akustiske Database for Dansk,” 2011. [Online].
Available: https://www.nb.no/sbfil/dok/nst taledat dk.pdf

[18] M. C. Green and D. Murphy, “EigenScape,” Oct. 2017. [Online].
Available: https://doi.org/10.5281/zenodo.1012809

[19] ITU-T Recommendation P.862, “Perceptual evaluation of speech quality
(PESQ): An objective method for end-to-end speech quality assessment
of narrow-band telephone networks and speech codecs,” 2001.

