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Abstract—Digital human animation relies on high-quality 3D
models of the human face—rigs. A face rig must be accurate
and, at the same time, fast to compute. One of the most common
rigging models is the blendshape model. We present a novel
approach for learning the inverse rig parameters at increased
accuracy and decreased computational cost at the same time.
It is based on a two fold clustering of the blendshape face
model. Our method focuses exclusively on the underlying space
of deformation and produces clusters in both the mesh space
and the controller space—something that was not investigated
in previous literature. This segmentation finds intuitive and
meaningful connections between groups of vertices on the face
and deformation controls, and further these segments can be
observed independently. A separate model for solving the inverse
rig problem is then learnt for each segment. Our method is
completely unsupervised and highly parallelizable.

Index Terms—Blendshape, K-means, inverse rig, point cloud
clustering, Gaussian process regression

I. INTRODUCTION

Animation of a human face is a challenging problem in the
industry due to our sensitivity to changes of expressions and
the uncanny valley effect [1]. In order to achieve realistic facial
deformations different approaches are considered, but the most
widely adopted one is the blendshape model. Blendshape
modeling is a well-established research topic [2]–[5], and the
related literature branches into several directions, covering
creation of the blendshape basis [2], [4], [6], [7], solving
inverse rig problem [3], [4], [8]–[12], direct manipulation [5]
and segmentation of the face [3], [8], [12]–[16].

Contribution. In this paper we introduce a novel approach
to face segmentation procedure in the context of solving
inverse rig problems. We propose a two-fold clustering of the
face that is based exclusively on the blendshape model. In
the first pass we cluster the vertices of the face mesh and
in the second we form groups of controllers corresponding
to each mesh cluster. To the best of our knowledge, this is
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the first paper that discusses a clustering of the deformation
controllers.

The whole procedure is unsupervised and demands only
a blendshape matrix and two user specified parameters: the
number of desired clusters K and a proportion of tolerable
overlapping between clusters p. The resulting clusters are
suitable for learning inverse rig parameters in parallel. Our
method produces intuitively correct face clusters and the
experiments produced 15 − 35% decrease in prediction error
and at the same time over 30% decrease in the number of
used vertices when solving a rig based on the obtained clusters
compared to a whole face approach.

Literature Review. There is no original reference paper
for the blendshape model, but a thorough introduction can
be found in [2]–[5]. The blendshape basis is conventionally
sculpted by hand. The works [4], [6] introduce an automatic
framework that adapts a generic model to a face of a new
character, while [2], [7] propose extracting a basis from a
dense set of face scans.

Next stage in the pipeline is adjusting activation weights
to produce the animation—this is called inverse rig and
represents the main bottleneck in production due to the time
involved. Automatic solutions for certain linear forms of the
rig are proposed in [3], [4], [8]–[10]. In order to enhance the
fidelity of expression, additional corrective blendshapes can be
introduced, yielding a nonlinear problem—as studied in [11],
[12]. One generalization of inverse rig learning is a problem
of direct manipulation, that considers an interface allowing a
user to drag vertices of the face directly in order to produce
the desired expression [5].

Another important direction of research is clustering of the
face. It allows different regions of the face to get observed and
processed independently or in parallel. Early works consider
a simple split of the face into upper and lower sets of markers
[3]. Later, these models are sought to be automatic [8],
[12] or semi-automatic [13]–[15]. All these works use either
topological positions of vertices in the face or their correlation
over animation sequence, completely neglecting the underlying
blendshape model. To the best of our knowledge, the only
approach to clustering based on the underlying deformation
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model is a recent work of [16]. That work aims for adding
a secondary motion on top of blendshape animation, and for
this reason the authors insist on a very small granularity of
clusters, and also need to include information on the direction
of deformation for each vertex. On the other hand, our main
goal is solving the inverse rig (in parallel), hence we aim for
relatively large clusters of vertices that are affected together.
Additionally, we have a second fold of clustering, that is
assigning a specific set of controllers to each mesh cluster.

Paper Organization. The rest of this paper is organized as
follows. Section II introduces the notation and the main ideas
of blendshape animation. Section III explains the proposed
clustering method. The method is evaluated in Section IV and
finally the paper is concluded with a discussion in Section V.

II. BLENDSHAPE ANIMATION

Consider a sculpted face in the neutral position. It consists
of n vertices v1, ..., vn ∈ R3 on the surface mesh. We
unravel coordinates of each vertex and stack them into a single
vector b0 ∈ R3n. Additionally, we have a basis of m atomic
deformations of the face (rising of a left brow, stretching of
a right mouth corner, etc.) vectorized in the same manner
to yield b1, ...,bm ∈ R3n. We call each bi a blendshape
or a controller. A blendshape matrix B ∈ R3n×m is then
formed as a matrix whose columns are blendshape vectors
B := [b1, ...,bm]. Now any feasible facial expression can be
obtained as

fL(c) = b0 + Bc

where c = [c1, ..., cm]T is a vector of activation weights for
each blendshape1. Mapping fL : Rm → R3n, from parameters
c into a mesh space, is called a rig.

Similarly, one can define an inverse rig problem, which is
a common problem in animation. The inverse rig considers
a reference mesh b̂ ∈ R3n that is conventionally obtained
as a 3D scan of an actor, and the task is to find an optimal
configuration ĉ so that fL(ĉ) ≈ b̂. Problem is often stated as
a least squares

minimize
c

‖fL(c)− b̂‖22

with possible constraints on the structure or sparsity of c.

III. CLUSTERING IN MESH AND CONTROLLERS

Some local models propose fitting separate regions or
marker points independently when solving the inverse rig,
and then interpolate the values in between, but each marker
point is fitted using a complete set of m controllers [13]. The
majority of the controllers in each face vertex are redundant
(points of the left ear are not affected by the controllers for the
right eye), so we would like instead to consider only relevant
combinations of vertices and controllers. This can be achieved
by clustering in both mesh and controller space.

More formally, we want to get a clustering {(Rk, Ck), k =
1, ...,K} where Rk represents row clusters of a blendshape

1Complex animation models can have additional corrective terms that would
yield a nonlinear rig function f(c) [12].

Fig. 1. Scheme of the proposed approach. Originally we have a character face
with a blendshape offset matrix D. We need to estimate a true value of weight
vector c. Matrix D is clustered in both mesh (rows) and controller (columns)
space, so the whole face model is divided into several submodels. Inverse rig
problem is solved for each local cluster independently and the final results
are aggregated into the prediction ĉ.

matrix B i.e.Rk is a set of indices of mesh vertices that belong
to the kth mesh cluster. Ck are the corresponding column
clusters of matrix B, i.e. set of indices of controllers that are
relevant for activating part of the mesh covered by Rk. In this
way we split a matrix B into K submatrices Bk and hence we
do not consider a single rig function fL(·) but a separate rig
function fk

L(·) for each region of the head:

fk
L(c

k) = bk
0 + Bkck.

Here, ck is a weight vector of controllers that belong to Ck,
bk
0 are vertices of a neutral mesh that belong to Rk and Bk

is a submatrix of B with rows in Rk and columns in Ck (See
Fig. 1).

We expect to find a natural structure that distinguishes parts
of the face mesh and corresponding groups of controllers.
Intuitively we would expect to have separate clusters for each
eye and ear, for a mouth region, neck and ideally a cluster
on the skull region containing inactive vertices that we could
neglect in the process of inverse rig fitting. We will see later
in results that the algorithm is able to discover this structure.

The method we propose consists of three steps that are
explained in the following subsections. We first prepare a
matrix of the offset magnitudes D and normalize it (Section
III-A). Rows of the matrix are further clustered using K-means
to produce mesh clusters, and we visit each controller to assign
it to clusters where it shows a significant influence (Section
III-B). In the final phase, clusters that show high overlapping
in controller space are merged together (Section III-C). The
summarized procedure is given in Algorithm 1.

A. Data Preparation

As pointed out in [7], if we work directly with the blend-
shape matrix B, we might end up with coordinates of a
single vertex allocated into different clusters, and destroy
the structure of the data. We want to guarantee that all the
coordinates vxl , v

y
l , v

z
l of a vertex vl in B will remain in the

same cluster. In order to allow for simultaneous clustering of
controllers we consider a matrix of offset values D ∈ Rn×m.
Columns di of this matrix are obtained as an offset for each
controller i:

dli =
∥∥[b3li , b3l−1i , b3l−2i ]

∥∥
2
, for l = 1, ..., n.



Fig. 2. Assignment of controllers to clusters. Values of di ∈ Rn are averaged
over mesh clusters to produce a vector hi ∈ RK . Further K-means with
K = 2 is performed over hi to distinguish between high and low activation
values. Controller i is assigned to clusters that correspond to high activation.

Here b3l−2i represents entry of a blendshape bi that corre-
sponds to x coordinate of the vertex vl. Similarly, superscripts
3l − 1 and 3l correspond to y and z coordinates of vl.

Some blendshapes produce larger offsets than others, so they
can receive higher importance when clustering. To exclude
this effect we additionally normalize matrix D. Each column
is divided by its maximum, so that each blendshape has a
maximum deformation offset value equal to 1.

B. Clustering

The proposed clustering algorithm is two-fold. In the first
step we consider clustering in the mesh space. For this we
perform K-means [17] over rows of D to obtain K mesh
clusters Rk. In the second step we visit each controller i to
decide to which cluster it should be assigned. The idea is
following: we take a column di ∈ Rn and compress it into
hi ∈ RK , with entries

hk
i =

∑
l∈Rk dli
|Rk|

for k = 1, ..,K.

Element k of vector hi represents the average magnitude of the
activation produced by the controller i in a mesh cluster Rk.
We want to assign the controller only to those mesh clusters
where the high activation is exhibited. (In general, most of
the entries of hi will be close to zero, and only few of them
will be considerably higher. These higher values or peaks are
the clusters we are interested in.) Hence, we perform one-
dimensional K-means clustering with K = 2 over the vector
hi. This will yield one segment with low activation values and
the other with high values, so we assign controller i to clusters
that correspond to indices of high values of hi (See Fig. 2).

For each mesh cluster Rk we will get a controller cluster
Ck, which is a set of controller indices assigned to that mesh
cluster. Final result is hence a set of mesh/controller cluster
pairs {(Rk, Ck), k = 1, ...,K}.

C. Overlapping Clusters

The proposed method allows for a single controller to be
assigned to multiple clusters. This will in general produce
overlapping pairs of controller clusters Ck and Cj (for some
j, k ∈ {1, ...,K}). This behavior is in accordance with the
nature of face, but sometimes the overlapping proportion is
very high, up to the point that cluster Ck is completely
contained in cluster Cj or vice versa. Complex regions like

mouth are especially susceptible to this, specifically if K takes
higher values.

To address this, we introduce a final adjustment step.
Consider a user specified parameter 0 < p ≤ 1 that represents
a percentage of the overlap that we will allow. Now consider
that we have an overlapping pair of controller clusters Ck and
Cj . In case that the intersection of two is high enough, i.e.
|Ck ∩ Cj | > pmin{|Ck|, |Cj |} we will merge two clusters into
(Rk ∪Rj , Ck ∪ Cj).

A complete pipeline is summarized in Algorithm 1 and
Fig. 1 schematically describes the method. Notice that we
do not consider a novel inverse rig solver—the novelty of
our work is a two-fold segmentation of the blendshape face
model that would enable using standard inverse rig solver in
a distributed and localized manner. This leads to simultaneous
improvements in both prediction accuracy and computational
efficiency.

Algorithm 1 Two-fold Clustering of the Face
Input: b1, ...,bm ∈ R3n, K ∈ {1, ..., n}, p ∈ (0, 1].
Output: mesh/controller cluster pairs
{(Rk, Ck), k = 1, ...,K}.

1: Create an offset matrix D ∈ Rn×m with elements

dli =
∥∥[b3li , b3l−1i , b3l−2i ]

∥∥
2
, i = 1, ...,m, l = 1, ..., n.

2: Perform K-means over rows of D to obtain mesh clusters
Rk for k = 1, ...,K.

3: for i = 1, ...,m do
4: Compress di ∈ Rn into hi ∈ RK where

hk
i =

∑
l∈Rk dli
|Rk|

.

5: perform K-means with K = 2 over hi. Indices of hi that
correspond to the cluster with higher clustroid represent
mesh clusters relevant for the controller i. Assign the
cluster i to relevant mesh clusters.

6: end for
7: for k, j ∈ {1, ...,K} do
8: if (p |Ck ∩ Cj | > min{|Ck|, |Cj |}) then
9: merge clusters k and j into (Rk ∪Rj , Ck ∪ Cj).

10: end if
11: end for
12: return {(Rk, Ck), k = 1, ...,K}

IV. EVALUATION OF THE METHOD

Once we obtain the clusters, we can learn the inverse rig
parameters in parallel. In a case when training data is available,
Gaussian process regression (GPR) is a simple and effective
approach for this [11]. We use GPR with a dot product
kernel, but instead of using a complete head as an input
and outputting a full set of controllers, we train K separate
models. Each model corresponds to one of K clusters and
takes as an input (output) only the mesh (controller) cluster



of interest. Models are trained independently and in the end
all the outputs are aggregated into a single output vector (the
values of the controllers that correspond to more than one
cluster are averaged).

Since a method like this was not proposed before (solving
inverse rig based on the mesh-controller clusters) we will use
a whole face model as a benchmark2. A whole face model
corresponds to K = 1, and we will experiment with values
of K ranging up to 100. K is a user specified parameter and
there will be certain trade-offs for different choices. In order
to evaluate the results we consider several common metrics
for this problem.

A. Evaluation Metrics

1. Controller Prediction Error (CE) and Mesh Prediction
Error (ME). These are the most straight forward and common
metrics for evaluating inverse rig solutions. We train a GPR
model [18] taking face meshes as an input and outputting
estimated controller weights. Those predictions produce the
corresponding meshes, hence we have both controller and
mesh prediction error. The mesh generating function is denoted
by f : Rm → R3n. If c is a ground truth controller vector and
ĉ the estimated one, we have

CE(ĉ; c) =
‖ĉ− c‖2

n
,

ME(ĉ; c) =
‖f(ĉ)− f(c)‖2

n
.

2. Number of Considered Vertices (NCV). Some choices of
K produce mesh clusters with no assigned controllers (eg.
inactive vertices in the skull region), and we can neglect those
when doing prediction. This reduces a computational cost for
the task.

3. Maximal number of Controllers (CpC) and Vertices (VpC)
per Cluster. Number of vertices (controllers) is recorded for
each nonempty cluster, and we extract the largest value. It
gives us idea of the size for the largest subproblem.

B. Data

The experiments are performed over three human face
datasets, provided by 3Lateral Studio for the purposes of this
research. In Dataset 1 we have m = 147 blendshapes, in
Dataset 2, m = 401 and in Dataset 3, m = 154. The number
of vertices n = 5863 is the same for the three sets. Each
dataset is accompanied by a short animation sequence. These
are subsampled and split into training and test sets. Training
sets contain 231, 220 and 239 frames, and test sets contain
129, 180 and 61 frames for Dataset 1, Dataset 2 and Dataset
3 respectively. Each frame is represented by the ground truth
activation weights and the corresponding mesh. GPR is trained
over training frames and the presented results are obtained
from test frames.

Fig. 3. Mesh clusters for Dataset 1 with K = 5, K = 13 and K = 50
respectively.

Fig. 4. Mesh Clusters for Dataset 1, K = 20. Left: clusters before merging.
Right: clusters after merging.

C. Results

Let us first consider Dataset 1. We try different choices
of K ranging from 2 to 100. In Fig. 3 we can see that the
mouth region shows more detailed clusters, and that small
values of K will not yield relevant clusters for other parts
of the face. For very large K we get a large number of
meaningless subdivisions. However, parameter p serves as
a form of regularizer—it will allow to merge most of the
enforced small clusters. A crossvalidation indicates that a good
choice of this parameter is p = 0.75, hence we will use it in
the rest of the experiments. Fig. 4 shows us the effects of
merging, and we can see also the quantitative improvements
in Table 1.

Fig. 5 shows values for pairs of evaluation metrics intro-
duced above, for each K. We can see that CE and ME are
highly correlated and that a whole face model exhibits a high
error. Probably the most important is a relation between ME
and NCV that gives us a trade-off between the size of the
problem and the accuracy. It indicates that an optimal choice
for this dataset would be K = 20 or K = 50 which is in
accordance also with the relation between ME and VpC.

ME CE CpC VpC
Before merging 0.719 0.092 16.4 269.3
After merging 0.532 0.059 15.9 316.8

Table 1. Results for Dataset 1, K = 20 before and after merging.

Evaluation results for all three datasets are presented in Fig.
6. Any choice of K > 1 yields a lower CE than a whole face
model, and we also have a significant decrease of the ME
(15− 35%). Around the value of K = 20 each dataset has a
huge drop in NCV (20−35%), while VpC is already very low.
Hence, choosing K ≈ 20 will yield a more accurate inverse rig
solution at a lower computational cost, compared to a standard
whole face approach.

2I.e. input is a whole head mesh without clustering, and the output is a
complete vector of controller weights.



Fig. 5. Evaluation scores for Dataset 1. ME and CE are highly correlated,
and tend to be higher for a low number of clusters (K < 5). NCV drastically
drops for K ≥ 20 while VpC exhibits exponential decay in K. Values of K
are represented as numbered colored dots.

Fig. 6. Different evaluation measures for three datasets. Modest choices of
K produce lowest ME and CE in each set, and NCV considerably drops for
K ≈ 20.

Finally we can conclude that solving inverse rig over a
clustered face yields significant improvements over a whole
face model with respect to each introduced metric of success.
Exact choice of number of clusters K still might depend on
what user aims to minimize. If the accuracy is the only target,
decision should be made based on ME (CE) values. If the
size of a problem is a bottleneck, the best choice is the one
where NCV drops. However, if a user has access to several
processors, a parallel model can be implemented, and then the
VpC and CpC are bottleneck, and slightly higher values of K
would work just as good. In most cases user will be interested
in some trade-off between size and accuracy, and then some
of the pairplots in Fig. 5 should be consulted to check for the
best joint improvement over K.

V. CONCLUSION AND DISCUSSION

In this paper we investigated a novel approach to a blend-
shape face segmentation in a light of solving inverse rig
problem. The method consists of a two-fold clustering of a de-
formation space (a blendsahpe matrix) that splits a face mesh
into natural clusters and connects each mesh segment with rel-
evant set of deformation controllers. Obtained mesh/controller
cluster pairs then define submodels of a whole face blendshape
model. These submodels are suitable for learning the inverse

rig in parallel, and while the size of the problem is reduced
the accuracy is increased simultaneously.

The method proposed in this paper is fully automatic, and
demands only two parameters to be specified: tolerance of the
cluster overlapping 0 < p ≤ 1, and a number of clusters K,
that would depend on a character’s face and later application
of clusters. The experiments indicate that results are especially
suitable for solving an inverse rig, as both the prediction error
and the size of a matrix are reduced, and also the submodels
can be learnt in parallel. The clustering itself is performed
exclusively over a blendshape matrix, hence there is no need
for additional training data.

In future experiments we plan to chose a different algorithm
for inverse rig estimation. Gaussian process regression (GPR)
is successful in solving inverse problem in animation [11],
but it cannot exploit the scaling properties of our clustering
results to the full extent. Hence we shall investigate alternative
approaches that might scale more favorably.
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