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Abstract—Stochastic differential equations (SDEs) are one
of the most important representations of dynamical systems.
They are notable for the ability to include a deterministic
component of the system and a stochastic one to represent
random unknown factors. However, this makes learning SDEs
much more challenging than ordinary differential equations
(ODEs). In this paper, we propose a data driven approach where
parameters of the SDE are represented by a neural network with
a built-in SDE integration scheme. The loss function is based
on a maximum likelihood criterion, under order one Markov
Gaussian assumptions. The algorithm is applied to the geometric
brownian motion and a stochastic version of the Lorenz-63
model. The latter is particularly hard to handle due to the
presence of a stochastic component that depends on the state.
The algorithm performance is attested using different simulations
results. Besides, comparisons are performed with the reference
gradient matching method used for non linear drift estimation,
and a neural networks-based method, that does not consider the
stochastic term.

Index Terms—Stochastic differential equations, Maximum like-
lihood, Neural networks, Lorenz-63 system

I. INTRODUCTION

Understanding the space-time variations of geophysical sys-
tems is a challenging task in geosciences. Data assimilation
approaches typically combine a physical model and remote
sensing data or in situ observations. The state-time evolution
is represented by a dynamical model, based on an approximate
representation of the physics of the real system [1]. The
observation model relates the observation to the true hidden
state, with a random noise to include observation error and
uncertainties. In this paper, we focus on the state model
described by a dynamical model, assuming an identity obser-
vation operator. Dynamical systems are usually represented by
Ordinary differential Equations (ODEs) or Stochastic Differ-
ential Equations (SDEs). The latter encompass a noise-driving
process in addition to the deterministic component. The noise
represents the uncertainty behind the model, i.e. processes not
included in the model but present in the real system. They are
widely used in domains such as finance [2], turbulence study
[3], the motion of vehicles in a traffic [4], oceanography [5].

Identification of governing equations of a dynamical system
from data can be performed using physical priors and/or
machine learning approaches. A method including polynomial
representations was proposed in [6]. In [7], the authors propose
a sparse regression framework with linear and non linear
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terms. However, such a formulation cannot deal with SDEs
or even observation noise [8]. With the availability of larger
data sets, machine learning approaches become relevant, using
for instance a neural network representation of the unknown
operator. They include autoregressive models such as Recur-
rent Neural Networks (RNN) [9], LSTM [10], Resnet [11], or
reservoir computing. The latter has been used successfully for
short-term prediction and attractor reconstruction of chaotic
dynamical systems from time series data [12], [13]. Besides,
the approach provides promising results compared to Echo
State Networks (ESNs) for high dimensional chaotic systems.
However, good performance is achieved under ideal condi-
tions, i.e. noiseless and regularly sampled with high frequency
data. For dynamical systems represented by ODEs, Neural
network based algorithms were proposed [9], [14], [15]. In
[8], [16] the identification used noisy and partial observations,
therefore both estimation of the hidden state and identification
of governing equations are tackled. For SDEs, the identifica-
tion comprises estimation of the drift and the diffusion. It can
be performed using pre-defined parametric representations of
the drift and the diffusion [17]. Non-parametric representation
of the drift includes linear and non linear drift. The first
can be carried using a variational smoothing algorithm [18]
or a variational mean field approximation [19]. Non linear
drifts are modelled using Gaussian processes [20]. For both
parametric and non parametric drifts, the gradient matching
approximation method is largely exploited [21], [22]. The drift
is estimated to match the empirical gradients of data, while
the diffusion relates to the residual of the approximation. On
the other hand, in [23], the authors generalize the adjoint
sensitivity approach to compute gradients of the solutions and
combine with a stochastic variational inference scheme to train
a latent SDE. Besides, the method is used to the Lorenz-63
system [24], with an additive diffusion term linearly dependent
on the state. Multiple trajectories are required for learning.

In this work we propose to extend [9] to model stochastic
dynamical systems. Although our motivation and applications
are related to problems in ocean and atmospheric sciences, the
method can be applied for more general issues. The method
is used to learn the Geometric Brownian Motion (GBM)
parameters. The GBM is a reduced dimension toy model, that
includes a stochastic component depending on the state. A
second application is to learn the dynamical operator of a
stochastic version of the Lorenz 63 model. The deterministic
Lorenz model introduced in [24] is a system of three coupled
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ODEs including linear and non linear terms. The Lorenz-
63 system is an appropriate simplified representation of the
ocean-atmosphere interactions derived from the Navier-Stokes
equations. The Stochastic Lorenz (SL) system presented in
[25] describes the evolution of the deterministic Lorenz model
when the local position of the state is uncertain. This un-
certainty is represented by a multiplicative noise on the y
and z components representing variables induced by small
scale velocity fluctuations. x is the large scale variable, which
is indirectly affected by the small scale uncertainty. The SL
system is an important model to represent geophysical flows.
It helps to efficiently explore the entire dynamical landscape of
the flows, with a reduced order flow representation [25], [26].
We propose a deep learning based approach to identify the
parameters of an SDE, in which both the drift and diffusion are
represented using neural networks. A parametric formulation is
considered, without prior assumptions on the parameters. They
are estimated using a maximum likelihood criterion, to define
the loss function of the learning algorithm. We maximize the
probability of obtaining the observed time series with a Marko-
vian model of order one on the time samples. The performance
are attested on the GBM and the SL system. Compared
with an algorithm based on a deterministic formulation, the
simulations results illustrate, the relevance of considering an
SDE formulation to deal with the SL system. The remainder
of the paper is organized as follows: section II is dedicated to
the neural networks for stochastic dynamical system, section
III describes the learning algorithm. Simulations results are
presented in section IV. We end the paper by a conclusion
with the perspectives of this work.

II. NEURAL NETWORKS FOR STOCHASTIC DYNAMICAL
SYSTEMS

In this section the Neural Network (NN) to represent and
generate a process using a stochastic differential equation, is
described. A SDE takes the general form of

dx = F(x(t), t)dt+ L(x(t), t)dβt (1)

where F and L are linear/non linear functions of x and dβt is
a multivariate Brownian motion, x is a d-dimensional vector,
F : Rd ×R → Rd is a function of x and the time t, L is a
state dependent matrix in Rd×s, and dβt a vector of dimension
s. For one dimensional case, d = s = 1 and linear functions
F and L, an analytical solution of the SDE can be calculated
such as with the Ornstein–Uhlenbeck process or the GBM.
However, in general, an explicit solution cannot be obtained
from Eq(1) and numerical approximation methods are used,
such as the Euler-Maruyama (EM) integration scheme:

xt+τ = xt + τF(xt, t) + L(xt, t)4 βt (2)

with τ is the time resolution. The EM method is the equivalent
to Euler integration scheme for SDEs [27]. The EM can
be used to simulate trajectories from SDEs and the result
converges to the true solution in the limit τ → 0. When L
equals to identity, the formulation given by Eq.(2), can be
regarded as an autoregressive model of first order.

Hereafter, unless otherwise specified, τ is set to 1 to simplify
the notation, without any loss of generality. Considering a
neural network architecture, the EM approximation Eq.(2) can
be regarded as a recurrent network with one residual layer, and
the SDE in Eq.(1), is reformulated as:

dx = (A1x(t) +A2x(t)×A3x(t)) dt+Bx(t)dβt (3)

where Ai, for i in 1, 2, 3 and B are scalar valued matrices
representing respectively the operators F and L. The
architecture of the network is defined based on Eq(3),
so that the formulation of the neural network includes
the true parameterization of the model. This is a general
architecture that is convenient for the GBM an the SL models.
The first term corresponds to the linear component of the
model represented by a fully connected layer, the second
term includes bilinear elements of the model represented
by an element-wise product operator to embed a second-
order polynomial representation for operator F . The whole
representation for the first two components is a bilinear neural
net architecture as in [9]. The third term refer to the stochastic
part of the model with multiplicative noise, where the linear
component is designed for L. The network is represented
with a fully connected layer multiplied by sampling layer
that simulates the noise. This sampling layer is used only
for the model to be able to generate new trajectories at test
phase, but is not directly used in the training phase since the
training is not stochastic.

III. LEARNING ALGORITHM

The aim is to identify the unknown SDE, that is to estimate
F and L from the data. Based on the NN representation,
the identification can be stated as learning the parameters
of a recurrent residual network. The deterministic dynamical
system is represented as an ODE, and a learning algorithm
using a residual neural network architecture was proposed
in [9]. The latter approach is related to the Neural ODE
scheme that has recently gained popularity [15], the authors
propose an ODE solver using continuous-depth models. A
theoretical guarantee of convergence was proved in [15] and
[23], showing that residual networks are well suited to learn
from data governed by both ODEs or SDEs.

In this paper, we propose to extend the architecture to
learn the stochastic dynamical model from data. Given an
initial condition, the EM method Eq(2) is used to generate
the training trajectory. The goal is to identify the set of
parameters Θ = {ω, φ} from the data, where ω and φ
denote the parameters of F and L, respectively. To relate
with the NN notation in Eq.(3), ω = {A1, A2, A3}, and
φ = {B}. It is worth pointing here that the stochastic nature
of the model complicates the reconstruction process. Indeed,
even for known parameters we cannot reconstruct the original
trajectory used for training. Therefore, unlike for deterministic
systems [9], the short-term prediction error is not suitable
as optimization criterion. From a probabilistic point of view,



and given that the state process is Markovian, the likelihood
function is given by:

pΘ(x0:T ) = pΘ(x0)

T∏
t=0

pΘ(xt+1|xt) (4)

where T is the number of points in the trajectory. From Eq.(2),
the distribution of xt+1 given xt is obtained:

xt+1|xt ∼ N(mt,Σt) (5)

where N refers to a multivariate Gaussian distribution with
mean mt = xt + F(xt), and covariance matrix Σt =
L(x, t)LT (x, t). It is worth pointing here that only the the
conditional distribution xt+1|xt is Gaussian and not the whole
process. Plugging Eq.(5) into Eq.(4), and considering Fω and
Lφ, then the maximum likelihood estimation of the parameters
is equivalent to the minimization:

arg min
ω,φ

T∑
t=0

‖xt+1 −mt‖2Σ−1
t

+

T∑
t=0

log |Σt| (6)

Eq.(6), defines the loss function used to train the NN. Unlike
the deterministic case, Σt can not be reduced to the identity
matrix to obtain the short term prediction error as in [8].

IV. RESULTS

Numerical experiments are presented to evaluate the per-
formance of the proposed algorithm. Data are generated using
the EM scheme Eq.(2), for fixed parameters and time steps.
The proposed algorithm named Bi-NN-SDE is compared to:
• The deterministic algorithm proposed in [9], using resid-

ual Bilinear Neural Network architecture, named Bi-NN.
• A Gradient matching approximation predominantly used

for non linear drift and diffusion estimation [17]. Drift
and the diffusion are respectively estimated using an
ensemble average for non stationary processes.

F̂(xt) =
1

N

∑
tj∈α
{x(tj + 1)− x(tj)} (7)

L̂(xt) =
1

N

∑
tj∈α
{x(tj + 1)− x(tj)− f(xtj ,xj)}2

N is the number of the ensemble realizations used for the
stochastic process, one realization is denoted by α.

First, the algorithm is applied to learn the parameters of an
SDE that describes a GBM process x(t) [28]:

dx = µxdt+ σxdβt (8)

Our goal is to estimate the drift F = µ and the volatility L = σ
then reconstruct the trajectories using the learned model from
a given initial condition. For the GBM, the theoretical mean
and variance are known:

E[x] = x0 exp(µt)

V (x) = x2
0 exp(2µt)[exp(σ2t)− 1] (9)

These values are compared with their equivalent by replacing
µ and σ by the learned values. Comparison includes also,

empirical curves measured using 1000 trajectories generated
respectively by the true model and the learned ones using
the algorithm BiNN and BiNN-SDE. Below, we consider
µ = 0.5 and σ = 1, τ = 0.001 and the trajectory length
T = 3000. Fig 1 represents one representative run of the

Fig. 1: Theoretical and empirical mean and variance for the
GBM process, with µ = 0.5, σ = 1

model, corresponding to a learned drift µ̂ and a diffusion σ̂
close to the mean value obtained over 100 trainings using
different trajectories table.(I). Curves with solid lines corre-
spond to the theoretical mean and variance, while the one with
dashed lines refer to the empirical parameters. The red color
corresponds to the true model, while the green, purple and blue
are assigned respectively to the BiNN-SDE, BiNN and the
gradient matching. For the latter, since we don’t have access
to the parameters, there are no curves for the theoretical mean
and variance. It is illustrated that, despite the stochastic nature
of the model, the Bi-NN-SDE algorithm learns the mean and
variance of the GBM, with lower error than the Bi-NN and the
gradient matching. For t < 2000, performance of the proposed
algorithm are slightly different from the theoretical one, and it
is expected to increase for higher t. For the BiNN algorithm,
the learned trajectory is deterministic, therefore theoretical and
empirical parameters are almost the same.

On the other hand to evaluate the variability of the estimator,
we present the mean and variance of the learned parameters
using 100 different learned models table.(I), confirming the
superiority of the BiNN-SDE algorithm. Note that with the
Bi-NN a deterministic formulation is considered, therefore the
drift σ is not estimated. The gradient matching algorithm,
provides an approximation of F(xt) and L(xt), thus an
explicit form of µ and σ cannot be calculated.

Second, the algorithm is applied to the SL system, that

Algorithm Bi-NN-µ Bi-NN-SDE-µ Bi-NN-SDE-σ
Mean 0.188 0.535 0.998
Variance 0.083 0.201 10−4

TABLE I: Mean and variance of the learned drift (second and
third columns) and the learned diffusion (fourth column).The
true values equal to µ = 0.5 and σ = 1

is a stochastic version of Lorenz-63 model. The latter is a
dynamical system largely used to represent ocean-atmosphere
interactions: it presents chaotic patterns, i.e. a small perturba-
tion in the initial condition leads to very different trajectories
in the long run. Moreover, the Lorenz-63 is a nice toy model to
learn dynamics from data : it is a reduced order, easy to visu-
alise model including non linear interactions. The stochastic
version of the Lorenz system, introduced in [25] is applied



to represent large-scale geophysical flows, with uncertainty
behind the local position of the state. We propose to model
the system as an SDE and thus the identification includes the
estimation of the drift and the diffusion terms. Identification
of such a system is difficult due to the multivariate dimension,
non linear relations between state components, the chaoticity
of the system in addition to the stochastic component. Besides,
it is worth pointing that the diffusion term depends on the
state, that is different from a simple deterministic Lorenz with
additive noise. The model is given as follows:

dx

dt
= σy −

(
σ +

2

γ

)
x (10)

dy =

(
(ρ− z)x−

(
1 +

2

γ

)
y

)
dt+

ρ− z
√
γ
dβt (11)

dz =

(
xy −

(
β +

4

γ

)
z

)
dt+

y
√
γ
dβt (12)

dβt is a Brownian motion, and γ characterizes the noise level:
the higher γ, the lower the noise level. σ, ρ and β are the
system parameters, also present in the deterministic version
of the Lorenz 63. The model is composed of an ODE on
the velocity Eq.(10), with two SDEs associated to temperature
fluctuations Eq.(11) and Eq.(12).
Note that for low noise level γ → ∞, we retrieve the
deterministic Lorenz equations [24], and that the γ influences
the x variable, though it is not directly perturbed by noise. The
SL model can be considered as stochastic differential equations
that take the general form of Eq.(1). Note the difference
with the GBM, the dimension (for the SL it equals to 3),
that implies higher number of parameters to learn: 27 for F
and 9 for L. The evaluation is performed on estimation of
the parameters using the RMSE, by matching the obtained
parametrization in Eq.(3) with the true one (including the
coefficients that should be zero). The ability of the algorithm
to reconstruct the attractor of the SL system is also illustrated.
The data are generated using the EM method from the true SL
model, for one trajectory, a fixed number of time steps and an
integration step, and different noise levels.
We simulate Ns = 100 trajectories of the SL model, with
τ = 10−3, and a trajectory length of T = 10000, γ = 50 (low
noise level) and γ = 10 (high noise level). The models are
trained once on each individual trajectory.

Algorithm Bi-NN-F Bi-NN-SDE-F Bi-NN-L
Noise
level γ

50 10 50 10 50 10

Mean
RMSE

0.322 0.601 0.306 0.522 0.123 0.359

Var
RMSE

0.019 0.065 0.017 0.0447 0.002 0.012

TABLE II: Mean and variance of the RMSE
Table (II) shows the mean and variance of the RMSE for

the estimation the drift and the diffusion matrices. For γ = 50,
the RMSE provided by the Bi-NN-SDE is lower than the Bi-
NN, but all models perform relatively well, due to the small
noise level. Furthermore, for strong noise γ = 10, using
the Bi-NN-SDE algorithm clearly improves the estimation

performance. The difference between RMSE is multiplied by
five (0.016 → 0.08). The above results present the global
RMSE. However, the parameters of the model encompass a
large set of zero coefficients. Therefore, it is convenient to
give the estimation error for the non-null coefficients, and to
check that the zero coefficients are close to zero. The gain

Fig. 2: Mean of the RMSE per coefficient, black numbers refer
to the Bi-NN, blue to Bi-NN-SDE and red for the gain rate.
rate is computed by the difference between the RMSE of both
algorithms normalized by the RMSE of the Bi-NN. As shown
in Fig(2), the Bi-NN-SDE outperforms the Bi-NN one for all
the model coefficients, the gain rate obtained is higher than
8% and can attain 38%. Regarding the null coefficients, the
individual RMSE is ≤ 10−2 except for 3 coefficients (from
20 null ones) where it is of order of 10−1.

Another possible parameterization involves setting to zeros
the null coefficients of the diffusion term to reduce the number
of parameters to learn and therefore improve the performance.
This is physically acceptable, since the first equation of SL
representing the large scale variable is deterministic. Due to
limited space, results are not presented for this formulation.

Comparison of the obtained attractors
We propose to further illustrate the algorithm performance
with visual comparison of the attractors generated by the
true model and the one using the different learning algo-
rithms. A more quantitative comparison is challenging due to
the stochasticity: for instance extending Lyapunov exponents
(which quantify the chaotic nature of attractors) to stochastic
systems is not straightforward. We observe in Fig(3) that

Fig. 3: Different results for the SL trajectories generated using
the true model and the learned ones with Bi-NN and Bi-NN-
SDE, respectively
among the Ns = 100 experiments with γ = 10, in 90% of



cases (results of the first and third row) the sequence generated
by the learned model Bi-NN-SDE captures the topology of
the true model (the two side of the butterfly shape of the
attractor), while the Bi-NN only achieves that in 60% of the
cases (results showed in the first row), and is stuck only in one
side in other cases. Another major difference is that the Bi-NN
algorithm fails to detect the stochastic fluctuations since the
algorithm consider the representation of the system as an ODE.
Regarding the gradient matching method, given the estimators
F̂ and L̂ Eq(7), different attractors are generated for different
trajectories used to perform estimation. Some examples are
given in Fig(4), as observed, while the learned system is indeed

Fig. 4: SL trajectories generated using the gradient matching.
stochastic, the gradient matching method fails to preserve the
topology of the SL model. In summary Bi-NN-SDE, achieves
both recovery of the SL attractor and the stochastic fluctuations
in most of the cases, even for significant noise levels.

V. CONCLUSION

An algorithm to learn stochastic dynamical systems is
proposed. The system is modelled as an SDE, the drift and
diffusion matrices are parameterized using NN. The algorithm
mimicks the EM integration scheme, thus coming with an
embedded SDE integration scheme. The networks are trained
using a maximum likelihood on the posterior one-step ahead
density of the samples. Preliminary results on the GBM
process and a challenging SL model illustrate the relevance
of considering an SDE formulation and good estimation per-
formance in term of the RMSE. We are currently working
on improving the quantitative performance of the algorithm,
especially for the diffusion term, and extending the algorithm
to include stochastic training as in variational autoencoders.
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