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Abstract—The two basic performance indices characterizing
the multi-target detection task in a radar system are the prob-
ability of false alarm (PFA) and the probability of detection
PD . It is well-known that, when the disturbance model (i.e.,
clutter and noise) is perfectly known, the Neyman-Pearson (NP)
detector provides the best decision strategy, i.e., the detector
that maximizes the PD , while keeping a constant PFA. However,
in practical scenarios, the a priori knowledge of the statistical
model of the disturbance is rarely available. In this paper we
investigate the robustness of a reinforcement learning (RL) based
Wald-type test to guarantee reliable detection performance even
without knowledge of the disturbance distribution. Specifically,
the constant false alarm Rate (CFAR) property is obtained by
applying tools from misspecified asymptotic statistics, while the
PD is maximized by exploiting an RL-based scheme.

Index Terms—Cognitive Radar, Reinforcement Learning, Mas-
sive MIMO, robust statistics, Wald test.

I. INTRODUCTION

The main idea underlying cognitive radars (CR) is that a
radar can enhance its performance by continuously sensing
the environment by means of an active feedback between the
transmitter and receiver modules. In CR schemes, this feed-
back is usually implemented through Bayesian filtering [1].
However, this might require some prior information about the
environment, which is hardly achieved in practice especially
in dynamic environments. In order to overcome this possible
limitation, reinforcement learning (RL) approaches can be
deployed. RL procedures are characterized by the presence
of an agent that seeks to attain a certain goal by means of a
sequence of decisions taken by learning through trial-error
interactions with the unknown environment [2]. The agent
assesses those decisions on the basis of its current state and the
reward. RL procedures have been already exploited in radar
detection, for example in [3], where deep RL schemes are
adopted to implement an “end-to-end” single target detection.
Specifically, the authors use a neural network to approximate
the decision statistic. However, no statistical guarantees are
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given on the overall detection performance under a variable
disturbance distribution. In our recent paper [4], we proposed
a novel approach to combine a robust Wald-type test, derived
for Massive MIMO (MMIMO) radar system in [5], with a
RL-based procedure. The aim was to maximize the detec-
tion performance of the resulting algorithm in an unknown
environment. However, the algorithm was only tested against
a specific unknown disturbance distribution. The goal of the
present paper is then to verify the overall robustness of the
joint RL/Wald-type detector. To this end, extensive investiga-
tions have been performed to check its effectiveness against
different (unknown) disturbance distributions by using PFA
and PD as performance metrics. More specifically, the CFAR
property and the power of the test (the PD) are assessed for
i) different levels of disturbance spikiness and ii) for different
model orders. The numerical results support the robustness
property of the joint RL/Wald test with respect to the unknown
disturbance model without sacrificing its statistical power.

II. PROBLEM FORMULATION

Consider a colocated MIMO radar with NT transmit and
NR receive antennas and a point-like target, located at an agle
θ. We assume that the radar cross section (RCS) is constant
over all the receiving elements. The transmit and receive
steering vectors are denoted by aT (θ) and aR(θ), where:

aT (θ) = [1, ej2πν , . . . , ej2π(Nt−1)ν ]T , (1)

and aR(θ) is defined similarly. Note that ν ∆
= df

c sin (θ)
where f is the carrier frequency and c is the speed of light.
We assume a uniform linear array (ULA) with inter-element
spacing d = λ/2 for both the transmitter and the receiver. The
baseband representation of the received signal at continuous
time t is defined as [6], [7]

CNr 3 z(t) = αaR(θ)aTT (θ)x(t− τ) + ĉ(t) (2)

where α ∈ C accounts for the target RCS and the two-way
path loss and τ represents the time delay due to the target po-
sition with respect to the radar. The random disturbance vector
is denoted as ĉ(t) ∈ CNR . The transmit signal x(t) ∈ CNT is
composed of a linear combination of independent orthonormal
signals Φ(t) ∈ CNT , such that x(t) = WΦ(t), where
W = [w1, . . . ,wNT

]T ∈ CNT×NT indicates a beamforming



weight matrix satisfying tr{WWH} = PT , where PT is
the total transmit power. After standard matched filtering, the
signal at the output of the receiver is given by:

CN 3 y = vec

(∫ T

0

z(t)ΦH(t− τ)dt

)
= αh(θ) + c, (3)

where vec(·) denotes the vectorization operator and N =
NRNT is the number of virtual spatial channels and

h(θ) = (WTaT (θ))⊗ aR(θ), (4)

where ⊗ is the Kronecker product. The spatially colored
disturbance vector is denoted by c = vec(C) where C =∫ T

0
ĉ(t)ΦH(t − τ)dt is disturbance matrix at the output of

the matched filter. It is worth mentioning that the statistical
description of the disturbance vector c is usually unknown,
hence its accurate modeling is a challenging task in practice
[8], [9]. Even if some simplistic disturbance models have been
adopted in literature, their a priori adoption may lead to a
misspecification problem [10] causing a performance drop in
real-word scenario.

To minimize the risk of model mismatch, a very weak
statistical assumption on the disturbance is made here [5, A1]:
A1 The disturbance is a realization of a discrete-time, circu-

lar, complex random process with a polynomial decay of
its autocorrelation function.

Note that this assumption is weak enough to include most
practical disturbance models such as autoregressive (AR),
autoregressive moving average (ARMA) or general correlated
Compound-Gaussian model [5].

A. Detection Problem

The received signal in (3) is processed by a bank of spatial
filters. Each filter is tuned to a specific angle range l, where
the radar field of view is divided into L separate discrete angle
bins each at θl. It is assumed that each angle bin l contains
only one target and the system transmits in total K pulses
such that k ∈ {1, . . . ,K}. For a single angle bin l, the radar
detection can be cast in terms of the following hypothesis
testing problem:

H0 : ykl = ckl k = 1, . . . ,K (5)

H1 : ykl = αkl hkl + ckl k = 1, . . . ,K,

As previously mentioned, the disturbance entries of ckl are
sampled from complex random process, satisfying Assumption
A1. Furthermore, the disturbance covariance matrix Γ =
E{(ckl )(ckl )H} is assumed to be unknown. The disturbance
statistics can vary in time and space. The targets can also
change over time. In particular, we allow to change from
one pulse to the other: i) the number of targets; ii) their
spatial frequencies; iii) their signal-to-noise ratio (SNR). Then,
we consider a single snapshot scenario and consequently the
detection is performed per pulse. To discriminate between H0

and H1, we implement the test statistic for the kthpulse as

Λ
(
ykl
) H1

≷
H0

λΛ. Conventional model-based test statistics such

as the generalized likelihood ratio test (GLRT), are generally
adopted in the radar literature. However, GLRT-like schemes
can not be directly applied to our model, since they require
a priori information about the disturbance probability density
function (pdf). In our work, to avoid the risk of running into a
misspecified scenario, we do not assume any functional form
of the pdf of ckl in (5).

In order to handle the detection problem in (5) under the
extremely general and weak assumption A1, the following
robust Wald-type detector has been deployed [5]:

Λkl,RW =
2|(hkl )Hykl |2

(hkl )HΓ̂hkl
, (6)

where Γ̂ is the estimate of the unknown Γ [5]. Specifically, it
can be shown that, if Assumption A1 holds true, this Wald-
type detector satisfies the following asymptotic (i.e., N →∞)
relations:

Λkl,RW
(
ykl,g|H0

) d∼
NTNR→∞

χ2
2 (0) , (7)

Λkl,RW
(
ykl,g|H1

) d∼
NTNR→∞

χ2
2 (ζ) , (8)

where ζ = 2|α|2 ‖h‖
4

hHΓh
. 1 These asymptotic properties allow

to choose the detection threshold λΛ that is able to guarantee
a pre-assigned PFA irrespective of the unknown pdf of the
disturbance. In particular, λΛ can be obtained as:

λΛ = H−1
χ2
2

(1− PFA), (9)

in which H−1
χ2
2

(·) is the inverse of the cumulative distribution
function (cdf) of a χ2

2 random variable. Moreover, from (8), a
closed form expression for PD can be obtained as:

PD (λ)→N→∞ Q1

(√
ζ,
√
λ
)
, (10)

where Q1 (·, ·) is first order Marcum Q function [11].
An important remark is in order here. While the asymp-

totic distribution of Λkl,RW(ykl,g|H0) does not depend on
the beamforming matrix W, the asymptotic distribution of
Λkl,RW(ykl,g|H1) does through the dependence on W of the
vector h in the non-centrality parameter ζ. This fact is of cru-
cial importance since it provides the theoretical guarantee that
it is possible to implement a RL-based algorithm capable of
enhancing the detection performance of the above-mentioned
Wald-type detector while keeping the CFAR property.

III. RL-BASED MMIMO COGNITIVE RADAR
RL is a machine learning technique which enables a cer-

tain agent to achieve an assigned goal through learning the
surrounding environment by trial and error. The agent gets
a continous feedback from the environment based on the
actions it takes. Consequently, the agent evaluates its action
ak using two types of information: state sk and reward rk.
In our detection problem, the agent is the MIMO radar with
an assigned goal to detect multiple targets within unknown
disturbance [4].

1Further details about the calculation of Γ̂ and the asymptotic distribution
of Λk

l,RW are provided in [5]



A. The set of states

A state sk in a RL problem defines the current status of the
unknown environment. In our problem, the state space S, is
defined in terms of the statistic Λkl,RW in (6). In particular, a
new statistic Λ̄kl is defined such that:

Λ̄kl =

{
1 Λkl,RW > λΛ

0 otherwise.
(11)

Hence, Λ̄kl indicates if a certain angle bin l at time k contains
a target or not. Therefore, sk can be described as the total
number of angle bins containing a target at specific time k:

sk =

L∑
l=1

Λ̄kl . (12)

Consequently, the set of states is S = {0, . . . ,M}, where M
is the maximum number of targets that can be detected.

B. The set of actions

The MIMO radar, i.e., agent, at every time k chooses a
certain action ak from a set of available actions A based on
sk. An action is generally defined by two main tasks: candidate
angle bins selection and beamforming. In particular, based on
the environmental state, the agent selects the corresponding
angle bins that most likely contain targets. Subsequently,
the agent optimizes the beamformer matrix W to focus the
beampattern towards the direction of those bins.
Therefore, ak ∈ A = {Θi|i ∈ {0, 1, . . . ,M}}, where the set
of i candidate angle bins is Θi = {θ̂1, . . . , θ̂i} and θ̂ is the
estimated angle bin of the target. Θi is defined based on the
highest i values of Λkl,RW in (6). As previously mentioned,
the agent utilizes this acquired information to optimize W
towards the desired angle bins Θi. This is done by focusing the
transmit power towards Θi, hence the optimization problem is
formulated as maximizing the minimum of the beampattern.
In more details, the optimization problem is cast as:

maxWminj∈Ti{aTT (θ̂j)WWHa∗T (θ̂j)} (13)

s.t. tr(WWH) = PT ,

where Ti = {1, . . . , i} and θ̂j ∈ Θi. This problem is solved
using iterative inner convex approximations algorithm [4].

C. The reward

The reward is defined as the enviromental feedback which
defines how well the agent is doing at a certain step k. The
agent’s main goal is to maximize the total cumulative reward
function [2]. In our specific application, the agent’s goal is to
detect all the targets without assuming any prior information
about the environment, (i.e., number of targets and distur-
bance statistics are unknown). The radar agent continuously
explores changes in the environment in real time, and modifies
its actions accordingly, i.e., optimizing the beamformers. To
achieve this specific goal, the reward is defined in terms of

the estimated P̂ kDl
that can be calculated in a closed form

asymptotically, i.e., N →∞ as

P̂ kDl
= Q1

(√
ζ̂kl ,
√
λΛ

)
, (14)

ζ̂kl = 2|α̂kl |2
∥∥hkl ∥∥4

(hkl )HΓ̂lhkl
, (15)

α̂ =
(hkl )Hykl
||hkl ||

. (16)

The reward for each time step k is given as:

rk+1 =

sk∑
l=1

P̂ kDl
−
L−sk∑
j=1

P̂ kDj
. (17)

In particular, the reward consists of two components, a nega-
tive and a positive reward. The positive one is a summation of
P̂ kDl

over all sk, which means it is summed over all the bins
that most likely contain a target. On the contrary, the negative
reward is summed over the bins that do not. The best case
scenario occurs when there is a target in every bin such that
sk = L, as this means that the decision statistic Λkl,RW > λ,∀l
(i.e., L targets are detected).

D. SARSA algorithm and target detection

SARSA is an acronym for state-action-reward-state-
action sequence. In more details, in SARSA the sequence
sk,ak,rk+1,sk+1 and ak+1 is used to update the Q-function
at each time k [12]. The Q function is defined as the expected
cumulative reward starting from state sk and taking action ak
following a certain policy π. The radar agent in our problem
continously updates a state-action matrix Q ∈ R(M+1)×(M+1)

of elements Q(sk, ak). The matrix is first initialized with
zeros, then updated based on the Q function after the execution
of a certain action. The Q-function is chosen according to the
following update rule [2]

Q (sk, ak)←Q (sk, ak) + (18)
α (rk+1 + γQ (sk+1, ak+1)−Q (sk, ak)) .

α ∈ [0, 1] is the learning rate controlling how much the new
experiences override the old ones. Note that γ is the discount
factor which controls the impact of future rewards.
The agent follows a certain policy π to determine which
action should be taken. In our algorithm, en ε-greedy policy
is employed to define ak through defining the size of Θi

(i.e., i). The optimal action aopt
∆
= arg maxa∈A Q (sk+1, a)

is chosen with a probability of 1 − ε, while another random
action arnd (excluding aopt) is chosen with a probability of ε.
The algorithm steps are explained in Alg. 1.

IV. SIMULATION RESULTS

In our simulations, we consider a total of L = 21 angle
bins, where the angle grid is expressed in terms of the spatial
frequency ν = [−0.5 : 0.5]. Furthermore, the disturbance
vector ckl is modeled as circular complex AR (n) process



Algorithm 1 SARSA

Initialize Q = 0M , s0 = 1, a0 = 1, K = 50 and Wk = I
repeat for each time step k:

Take action ak by using Wk as beamforming matrix
Acquire the received signal ykl , ∀ l = 1, . . . , L
Calculate sk+1 from (12) and rk+1 as in (17)
Choose action ak+1 with ε greedy, identify Θi and Ti
Update Q(sk, ak) as in (18)
sk ← sk+1;ak ← ak+1

if sk+1 6= 0 then
Solve for Wk+1 in (13)

else
Wk = I

until Observation time ends

[5] cn =
∑n
i=1 ρicn−i + wn, n ∈ (−∞,∞) , driven by

independent, identically t-distributed (i.i.d.) innovations wn
whose variance is σ2

w and pdf pw is defined as:

pw (wn) =
λ

σ2
w

(
λ

ξ

)λ(
λ

ξ
+
|wn|2

σ2
w

)−(λ+1)

, (19)

where ξ = λ/
(
σ2
w (λ− 1)

)
is a scale parameter, while the

shape parameter λ ∈ (1,∞) controls the non-Gaussianity of
wn. Specifically, pw is a heavy tailed pdf with highly non-
Gaussian behavior when λ → 1. On the contrary, if λ → ∞,
then pw collapses into a Gaussian distribution. In order to test
the robustness of our algorithm, we analyze its performance
against different disturbance scenarios characterizing harsh
environments. We compare the performance of our RL-based
waveform matrix selection scheme against omnidirectional
transmission with equal power allocation. In the latter case,
orthonormal waveforms are transmitted and the total power
is equally divided across all antennas under the constraint
Pt = 1. In the following three different scenarios are analyzed.

A. Varying N

In this scenario, the parameters of the innovation process
are chosen to be λ = 2 and σ2

w = 1. Furthermore, the nor-
malized power spectral density (PSD) of the AR disturbance
is modeled as in [5]

S(ν)
∆
= σ2

w

∣∣∣∣∣1−
p∑

n=1

ρne
−j2πnν

∣∣∣∣∣
−2

, (20)

with p = 6 as the order of the AR process, while the coefficient
vector ρ is

ρ =[0.5e−j2π0.4, 0.6e−j2π0.2, 0.7e−j2π0, 0.4e−j2π0.1, (21)

0.5e−j2π0.3, 0.6e−j2π0.35]T .

Hence, the disturbance power is distributed across the
whole spatial frequency range. Four targets are gener-
ated at ν = {−0.2, 0, 0.2, 0.3} ⊂ ν, with SNR =
[−5dB,−8dB,−10dB,−9dB], respectively. Fig. 1 shows the
P̂D for the target at ν = 0.3 as a function of the virtual spatial

channels N for a pre-assigned PFA = 10−4. The detection
of this target might be a hard task since it is masked within
a clutter peak. Furthermore, it suffers from very low SNR.
However, our algorithm can successfully detect the target as
N → 104 (i.e. NT = 100), in contrast to the omnidirectional
approach. In addition, we can see that the estimated P̂D of the
RL algorithm through multiple Monte Carlo runs agrees with
the theoretical nominal one provided in (10).

102 103 104
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P
D
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nominal RL

Figure 1: P̂D at PFA = 10−4 across N

B. Varying λ

In this scenario, we asses the robustness of our algorithm
against different levels of non-Gaussianity of the disturbance.
We choose N = 104 and PFA = 10−4. Fig. 2 shows the P̂D
as a function of the non-Gaussianity parameter λ. The results
show a constant P̂D for target at ν = 0.3 across different
values of λ. This proves that the algorithm has a robust and
constant superior behavior compared to the omnidirectional
approach. In addition, as expected, the estimated P̂D matches
perfectly with the nominal theoretical one provided in (10).
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Figure 2: P̂D at PFA = 10−4 and N = 104.

In Fig. 3, the CFARness of the algorithm is assessed
against the disturbance spikiness. Fig. 3 shows that our RL
algorithm provides a constant PFA across λ, similar to the om-
nidirectional approach. Both algorithms achieve the nominal
P̄FA = 10−4. This proves the theoretical results in (8), which
indicates that the CFAR property is always (asymptotically)
achieved using the Wald-type statistic Λkl,RW irrespective of
the specific waveform matrix W. This is a consequence of
(8) that shows that, under H0, Λkl,RW(ykl,g|H0) is distributed



as a central chi-squared χ2
2 random variable regardless of W.
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Figure 3: PFA at N = NTNR = 104 across λ.

C. Varying AR(p)

The robustness of the RL algorithm is further val-
idated across more general disturbance models. In this
scenario, the P̂D is evaluated across many orders of
the autoregressive process (AR). Specifically, p varies
as p ∈ [1, . . . , 10]. The magnitude of ρn in (20)
is chosen from [0.8, 0.7, 0.7, 0.6, 0.6, 0.4, 0.4, 0.5, 0.5, 0.3],
while the corresponding spatial frequency is selected
from [0, 0.1,−0.1, 0.2,−0.2, 0.1,−0.1, 0.4,−0.4, 0.5]. For in-
stance, if p = 1, then ρ = 0.8e−j2π0, while if p = 2, then
ρ =

[
0.7e−j2π−0.1, 0.8e−j2π0, 0.7e−j2π0.1

]
. Fig. 4 shows the

probability of detection of the target at ν = 0. Note that
at ν = 0, there is always a disturbance peak, regardless of
the value of p. Despite that, the P̂D of this target using our
algorithm is constantly higher compared to the omnidirectional
case, no matter the order of the AR. It can be noticed a slight
drop in the case of AR(1), p = 1, as all the disturbance
energy in this case is focused on the target at ν = 0,
while an AR(p > 1) will spread it all over multiple spatial
frequency points. Again here, the estimated P̂D agrees with
the theoretical nominal P̂D in (10).
Finally, Fig. 5 shows that the CFAR property with respect to
the order p is satisfied for both the proposed RL-based and the
omnidirectional algorithms. Again, this represent a numerical
validation of the theoretical result that the CFAR property
is satisfies using the Wald statistic Λkl,RW in any disturbance
statistics independent of W.
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Figure 4: P̂D at PFA = 10−4 across several p
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Figure 5: PFA at N = NTNR = 104 across p.

V. CONCLUSION

In this paper, we investigated the robustness of the multi-
target RL-based Wald-type detector proposed in [4], [5]. The
performance of the algorithm has been assessed for various
unknown disturbance models. The main results is that the RL-
based Wald-type detector is able to achieve the CFAR property
with respect to a wide range of (unknown) disturbance models.
At the same time, the RL-based waveform selection scheme
will provide the detector with a remarkable increase of its
PD while keeping the CFAR property. Last but not the least,
the estimated PD obtained by using the RL-based scheme
is in agreement with the theoretical closed form expression
provided in [5].
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