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Abstract—Research on sound event detection (SED) in envi-
ronmental settings has seen increased attention in recent years.
The large amounts of (private) domestic or urban audio data
needed raise significant logistical and privacy concerns. The
inherently distributed nature of these tasks, make federated
learning (FL) a promising approach to take advantage of large-
scale data while mitigating privacy issues. While FL has also
seen increased attention recently, to the best of our knowledge
there is no research towards FL for SED. To address this gap
and foster further research in this field, we create and publish
novel FL datasets for SED in domestic and urban environments.
Furthermore, we conduct baseline results on the datasets in a
FL context for three deep neural network architectures. The
results indicate that FL is a promising approach for SED, but
faces challenges with divergent data distributions inherent to
distributed client edge devices.

Index Terms—federated learning, sound event detection, deep
learning, distributed learning

I. INTRODUCTION

The aim of sound event detection (SED) is to automatically
identify the occurrence of target sound events, such as glass
breaking or dog barking, within an audio signal capturing an
acoustic scene. Identifying these sound events within complex
scenes is a challenging and open research problem that has
attracted much attention in recent years, observed with the
increase in the literature and particularly with the growing
research interest in the DCASE Community1. Two common
SED uses-cases are acoustic monitoring in domestic [1] and
urban [2] environments. In both scenarios, the use of audio to
train detection models in a centralized training context raises
considerable privacy concerns. In these environments, there are
speech and other sounds that are confidential which should not
be shared or stored insecurely.

State-of-the-art approaches to SED are most commonly
based on deep learning [3] which requires large centralized
datasets for model training, posing significant security and
logistical challenges. Federated learning (FL) [4] offers an
attractive approach to mitigate some of these concerns. Instead
of sending private data to a centralized data store, FL performs
model training directly on many client edge devices (from here
on referred to as clients) using locally stored data. The clients
then share only their updated parameters with a coordination
server, which aggregates the shared parameters to update a
global model. The new global model is then transferred back

1http://dcase.community

to the clients. This process continues until convergence, or
indefinitely if new data is continuously acquired [5].

Current research in FL has focused on image or text-based
tasks. To our knowledge, the only known research or practical
applications of FL in the audio domain are related to keyword
spotting [6]–[8]. Due to the limited research on FL for SED,
there remain questions about the effectiveness of the approach
due to varying acoustic conditions inherent to distributed
clients. For example, data may be captured from clients in
multiple locations with different background noise character-
istics or in locations with only a subset of the sound event
classes. This leads to differences in data distributions amongst
the clients involved in the training process. For centralized
training, data from multiple devices is combined into single
training dataset that is typically assumed to be independent
and identically distributed (IID), but with FL distributed data
collection leads to models being trained using data from
divergent distributions, i.e., data that is non-IID. Existing SED
datasets do not capture the non-IID characteristics seen with
FL. To address this gap and foster research on FL for SED,
we contribute novel SED datasets specifically designed for FL
training. Additionally, we provide baseline results for three
neural network architectures to evaluate the effects of FL
hyperparameters and non-IID data on SED performance.

II. RELATED WORK

A. Federated Learning

McMahan et al. first proposed the idea of FL as a method
to allow data to remain on distributed devices while training
a shared model by aggregating locally trained updates [4].
For a comprehensive overview of FL, refer to the technical
report by Kairouz et al. [5]. There are two main challenges
for FL methods. First is the need for communicating over
unreliable networks to transmit data. A second issue results
from data captured in varying contexts, leading to datasets
that are statistically dissimilar, non-IID, between clients.

To address these challenges, Sattler et al. [9] proposed a
compression framework sparse ternary compression (STC).
Similarly, Lin et al. [10] and Bernstein et al. [11] proposed
methods to remove the redundancies of gradient informa-
tion in node-distributed learning frameworks. Hsieh et al.
evaluated the challenges of non-IID data in an FL scenario
[12]. They identified problems with the batch normalization
layer, a common layer in many deep neural network (DNN)
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TABLE I: Sound event and background classes for each of the datasets.

Dataset Sound Event Classes Background Noise Classes

DESED-FL e1: Dishes; e2: Cat; e3: Frying; e4: Dog; e5: Blender; e6: Speech; e7: Vacuum cleaner;
e8: Electric shaver/toothbrush; e9: Alarm bell; e10: Running water

apartment room, computer interior, computer
lab, emergency staircase, and library

URBAN-FL e1: Children playing; e2: Siren; e3: Drilling; e4: Street music; e5: Car horn; e6: Gun
shot; e7: Jackhammer; e8: Dog bark; e9: Air conditioner; e10: Engine idling

birds, crowd, fountain, rain, and traffic

architectures, and proposed to use group normalization [13]
instead. Similarly, to address the problems of non-IID data,
Sattler et al. [14] proposed a clustering operation to group
clients whose data distributions have similar characteristics.
While the previous research proposed methods to overcome
challenges in FL, there are no known datasets to evaluate them
for SED. We address this gap, by presenting new SED datasets
specifically designed for FL with non-IID data.

B. Sound Event Detection

State-of-the-art SED algorithms build upon deep neural net-
works, the most common being convolutional neural network
(CNN) and convolutional recurrent neural network (CRNN)
based architectures. Both architectures include convolutional
front-ends, where multiple convolutional layers are trained
to learn sound-specific features. As input to the network,
either fixed two-dimensional signal transformations such as
mel spectrograms [15] or raw one-dimensional audio samples
are used (end-to-end learning) [16]. As a back-end, CNNs
use fully-connected layers for classification whereas CRNNs
employ recurrent layers such as gated recurrent unit (GRU) or
long short-term memory (LSTM) layers to model the temporal
progression of the extracted features. We focus our work on
CNN architectures for a lightweight approach, to enable model
training on low resource devices required by FL.

Training SED models requires strongly labeled datasets in
which onset and offset times are labeled for each sound event.
Because of the laborious effort required to annotate real-
world samples, researchers often use synthetically generated
datasets. This requires mixing events from a curated sound
bank with a background signal to synthesize soundscapes with
multiple, possibly overlapping, events. For example, URBAN-
SED [17] is composed of sound events from the UrbanSound-
8K (URBAN-8K) [2] dataset mixed with Brownian noise.
A recent trend is to use a combination of synthetic and
real recordings for training and evaluation as with Domestic
Environment Sound Event Detection (DESED) [1]. For both
datasets, however, events are distributed uniformly during
soundscape generation. For FL, events should be distributed in
a structured fashion to simulate real-world distributed learning
conditions. To enable research in FL for SED, our proposed
datasets distribute soundscapes to clients with different back-
ground characteristics and class distributions.

III. DATASETS

In this section we present DESED-FL and URBAN-FL,
datasets for acoustic monitoring of domestic and urban en-
vironments with FL. Each use case contains two independent

training sets: an IID dataset, in which sound event classes are
distributed evenly to devices, and a non-IID dataset, in which
only a subset of the total classes is assigned to each client. To
imitate varying acoustic conditions, we mix sound events with
one of five background noise classes. Each training dataset is
partitioned into 100 clients with 20 clients per background
noise class. It is possible to simulate more than 100 clients
by partitioning further, or less than 100 by combining or
removing clients. For reproducible evaluation, each use case
also includes an evaluation dataset in which sound events are
uniformly distributed to each background class.

To generate the soundscapes for DESED-FL, sound events
and background noises are sourced from DESED [1].
URBAN-FL soundscapes are generated using sound events
from URBAN-8K [2], and background noises from Isolated
Urban Sound Database (IUSD) [18]. The sound event and
noise classes for each dataset are listed in Table I.

A. IID and Non-IID Training Datasets

To generate the IID and non-IID dataset variations, two
sound event class distribution schemes are implemented for
assigning events to clients. The IID scheme uniformly dis-
tributes event classes to all devices. This is the best possible
case for training FL models since all clients have access to
all classes. To simulate a more realistic scenario, in which
clients only have knowledge of a subset of all classes, the
non-IID scheme distributes events to clients using five class
distributions, with each distribution containing a subset of five
classes. To minimize the bias that could result from linking
background sounds to certain subsets of event classes, each of
the five distributions is assigned to four clients per background
noise. This results in each set of 20 clients per background
noise comprising five class distributions. A detailed view of
each data distribution is presented in Appendix A. In the non-
IID scheme, each of the five class distributions contains five
event classes for a total of 25 event classes, which is not
divisible by 10, the number of total classes. This means that
five event classes were used three times and five event classes
were used only twice.

One goal in designing the distributions is to have each set
of classes be as different as possible from any other set, while
ensuring that each class is used at least once. Hence, the
algorithm to select class distributions minimizes the penalty
value p computed by

p =

Ncoll−1∑
k=1

Ncoll∑
l=k+1

N2
eq (k, l) ,



where Ncoll equals the number of collections and Neq (k, l)
represents the number of equal classes in collections k and
l. We do not take into account whether classes are likely to
occur together in real-world applications, since there are no
obvious combinations that would never happen together.

The distributions that minimize the penalty
p consists of the sets {e1, e2, e4, e6, e9},
{e1, e3, e4, e7, e8}, {e1, e3, e5, e6, e10}, {e2, e3, e5, e7, e9},
and {e2, e4, e5, e8, e10}, where each event ei is assigned one
of the available event classes. The mapping of the event
classes to the positions (i.e. e#) have been randomized, and
can be found in Table I.

B. Data Generation

The datasets consist of ten-second soundscapes synthetically
generated using Scaper [17] by mixing between one and five
possibly overlapping source events with one background noise
type. Each event is mixed with an signal-to-noise ratio (SNR)
chosen from N (µ, σ2) with µ = 10dB and σ = 3dB.
The sound events are selected by sampling from the class
distributions as discussed in Section III-A. Additionally, source
events are augmented by pitch shifting the audio by an amount
uniformly sampled from the range [−2, 2], and by time stretch-
ing by a value uniformly sampled from the range [0.8, 1.25].
These augmentations are only applied to the training data.

Before generating the soundscapes, the source data is split
into training and evaluation sets to ensure that there is no
data leakage. For DESED-FL events, the data is partitioned
into training and evaluation data according to split provided
by DESED. For Urban-FL, we take the approach employed
for URBAN-SED, by using the existing stratified folds from
the URBAN-8K dataset for the split: folds 1-6 are used for
training and 9-10 for evaluation. We omit folds 7-8, used by
URBAN-SED for validation, since the DESED source data
does not contain a validation split. The background noise for
each dataset is split into training and evaluation by splitting
each source file into separate training and evaluation segments.

The final training datasets each contain 100 ten-second
soundscapes per edge device, totaling 10 000 soundscapes. The
evaluation datasets contain 400 soundscapes per background
class for a total of 2000 soundscapes. To enable reproducibil-
ity, the dataset creation scripts are available for download2

IV. EXPERIMENTAL SETUP

A. Architectures

We propose three baseline architectures to evaluate different
model complexities and their effects on FL. One of the
goals driving this research is developing small models that
are able to be trained on low resource devices, such as
neuromorphic hardware. Therefore, we evaluate two standard
CNN architectures of different sizes, and a Residual Network
(ResNet) architecture [19]. The baseline CNN, CNN-Base, is
a medium-sized architecture based on the feature extraction

2https://www.idmt.fraunhofer.de/en/publications/idmt-fl.html

front-end of the 2019 Detection and Classification of Acous-
tic Scenes and Events (DCASE) Challenge Task 3 baseline
architecture. It is composed of seven convolutional blocks and
a linear classification layer, for a total of 542 442 parameters.
The second CNN architecture is a small CNN, called CNN-
Sm, and was designed using neural architecture search with
Bayes optimization [20] to limit the model to nearly 100 000
parameters while optimizing the F-score on the URBAN-SED
dataset. The found model has four convolutional blocks, a
single feed forward layer, and a classification layer, resulting
in 115 434 parameters. Lastly, we propose a medium-sized
ResNet architecture, ResNet, with five independent component
(IC) ResNet blocks [21] and a classification layer for a total of
422 090 parameters. Detailed descriptions for each architecture
may be found in Appendix B.

B. Preprocessing

1) Input Representation: The input for each model is a
perceptually weighted mel spectrogram [19]: The input signal
is first downsampled to 22 050Hz. The short-time Fourier
transform (STFT) is applied with a fast Fourier transform
(FFT) of size 2048 and a hop size of 512, and is followed
by perceptual weighting. A mel-filter bank of 256 mel bands
is then applied. Finally, 43 windows are stacked together
resulting in a feature representation (43x256x1) of one second.

2) Data Augmentation: Similar to Salamon and Bello [22],
we apply pitch shifting to the audio data before extracting
the mel spectrograms. However, instead of applying all shifts
of ±2 and ±1 semitones for a total increase factor of 4, we
randomly select one semitone value between ±2 for each input
for a total augmentation factor of 1 (i.ẽ., doubling the size of
the dataset). This helps significantly reduce the final size of the
dataset and has only a minor impact on model performance.

C. Experimental Design

In our first experiment, the three proposed network ar-
chitectures are evaluated in a centralized training scenario.
First, we train the models using the original URBAN-SED
dataset [2] to validate that the architectures work as expected
on a well-known dataset. Then, we train each of the three
models using the FL training sets. We evaluate the models,
first, with batch normalization, and then, replace all batch
normalization layers with group normalization to ensure that
this substitution for mitigating non-IID issues in FL [12] does
not significantly affect the baseline results. All models are
trained for 50 epochs with early stopping using a patience of
25 epochs, which monitors the validation loss. We use the
Adam optimizer [23] with a cosine learning rate schedule in
the range [1e− 04, 1e− 06].

The next experiments evaluate the influence of FL hyper-
parameters on SED performance, namely the total number of
clients, N , the percentage of total clients that participate in
each training round (participation rate rp), and number of
local epochs performed during each round, EL. For N we
evaluate 1, 25, and 100 clients, with N = 1 providing a
FL baseline. For rp, values of {0.25, 0.5, 1.0} are used in

https://www.idmt.fraunhofer.de/en/publications/idmt-fl.html


order to simulate the uncertainty of client participation during
each communication round. At each round a fraction, rp,
of the N clients are uniformly sampled (with replacement
at the end of each round) to participate in training. As the
amount of network communication should be limited in FL,
we evaluate the effects of EL = {1, 3, 5} to reduce the number
of communication rounds by increasing amount of training
steps performed on each client before sending weight updates.
For all FL experiments, the local client models are optimized
using Adam, with a learning rate lr = 1e − 04, proposed by
Leroy et al. [6]. The local weight updates are aggregated by the
coordinator using the standard Federating Averaging algorithm
using stochastic gradient descent (SGD) with a learning rate
of 1.0 [4].

Due to the number of experiments, the size of the datasets,
and the training times required for each experiment, we limit
the number of communication rounds during training to 60
rounds per experiment. Thus, reducing the time and resources
required for evaluation3. While in some cases the models may
not have completely converged, the results provide valuable
insights to improve our understanding of the different effects
of FL hyperparameters to better focus future research.

V. RESULTS

A. Centralized Training

Table II lists the segment-based F-Scores for each of the
proposed datasets and architectures from centralized training.
Additionally, we include the results of the architectures trained
using the URBAN-SED [17] dataset as a baseline to validate
the architectures’ performance on a well-established dataset.

In the case of URBAN-SED, the models perform compara-
ble or better than the original baseline of F = 0.57 from
Salamon et al. [17]. In general, the ResNet architecture is
typically the best performing model. Furthermore, replacing
batch normalization with group normalization has only minor
effects on the performance of all architectures, and in many
of the cases it improves performance. The results also indicate
that data distribution, either IID or non-IID, has minimal
effect on model performance in a centralized context. This
is expected since all data is used during each training epoch,
and the model does not fit to a particular data distribution.

B. Federated Learning

Figure 7 shows the segment-based F-scores on evaluation
data for models trained with each training datasets. DESED-
FL results are shown in Figure 1a, and URBAN-FL in Figure
1b. Each subfigure includes the the results from IID (top row)
and non-IID (bottom row) datasets. The results are shown for
hyperparameters N , EL, and rp as a function of communica-
tion rounds. Here we present the results for rp = 0.5 with the
remaining results found in Appendix C. The training curves
for IID data look similar to what is expected in a centralized
training scenario with the training times (i. e., number of

3In real-world FL, this would not be an issue due to the inherent paral-
lelization of FL, as opposed to simulating FL on a single server.

TABLE II: Centralized Training F-scores.

Dataset IID Norm CNN-Sm CNN-Base ResNet

URBAN-SED - batch 0.566 0.567 0.601
URBAN-SED - group 0.532 0.587 0.589

URBAN-FL 3 batch 0.600 0.625 0.647
URBAN-FL 3 group 0.574 0.638 0.647

URBAN-FL 7 batch 0.593 0.609 0.634
URBAN-FL 7 group 0.564 0.618 0.642

DESED-FL 3 batch 0.627 0.632 0.630
DESED-FL 3 group 0.628 0.632 0.664

DESED-FL 7 batch 0.618 0.625 0.625
DESED-FL 7 group 0.621 0.634 0.647

communication rounds) being influenced by the architecture
type, participation rate, and the number of local epochs.
Typically in the IID setting, increasing model complexity and
EL reduces the amount of communication needed between
client and server by improving the training time; whereas,
increasing N slows down training. This could be attributed
to the fact that each local client has less data resulting in
smaller gradient deltas between the global and newly trained
local model at each round. These observations, however, do
not necessarily hold in a non-IID context, where performance
degrades significantly for all models (except for the baseline
N = 1). In this case, the results indicate that larger models are
prone to overfit to the data seen during an individual training
round. This is especially true with a small number of clients,
such as N = 25, since there is inherently less variation in
the randomly selected client distributions. However, even in
cases when all data is seen during each communication round,
i. e., rp = 1.0, the ResNet continues to overfit. Reducing EL

helps to alleviate this issue by limiting the gradient values,
but slowing down training. Training with a larger number of
overall clients helps to mitigate this issue as well. In general,
the models in a non-IID scenario tend to overfit to local
distributions, and the federating averaging process does not
correct for this on its own. Damping the gradients before
performing aggregation, by lowering the server learning rate
or by normalizing gradients for example, may help to reduce
the effects of large local gradients.

VI. CONCLUSION

In this work, we introduce DESED-FL and URBAN-FL,
two novel datasets to foster research in FL for SED. To
better understand the effects of previously identified challenges
associated with non-IID data in FL, we include both IID
and non-IID training sets for each use case. Additionally, we
contribute the first known research on FL for SED through the
evaluation of three baseline neural network architecture. The
results show that while FL is a promising approach for SED
it is prone to challenges with non-IID data similar to previous
FL research [9], [12]. By contributing non-IID datasets, we
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Fig. 1: F-scores as a function of communication round for PR = 50%, and for N = {1, 25, 100}. The top row shows results
of the IID datasets and bottom row non-IID. Each column in the subfigures show the results for a specified N .

hope enable further research to identify potential solutions to
mitigate these issues.

Future research directions include addressing the issues of
non-IID data through adaptive techniques such as the auto-
matic adjustment of parameters [12], or clustering techniques
to identify groups of distributions and train individual models
accordingly [14]. Furthermore, an investigation on strategies
for local data management is needed. Since clients may have
limited storage capacities, an evaluation of how much data
should be stored and for how long is needed. Additionally, it
is important to be able to identify which data samples contain
the most information and should be stored for later training. To
that end, the selective sampling of data based on entropy [24]
is an interesting research direction.
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APPENDIX A
DATASETS

TABLE III: DESED-FL and URBAN-FL Sound Event Statistics per Client Device

Dataset Version Max Poly Avg Poly Avg Num Events Avg Dur. (s) Min Dur. (s) Max Dur. (s)

URBAN-FL IID 5 1.97± 0.09 2.98± 0.14 2.57± 0.10 0.09± 0.03 4.98± 0.02
URBAN-FL Non-IID 5 1.98± 0.08 3.00± 0.14 2.58± 0.15 0.09± 0.03 4.98± 0.02
URBAN-FL Eval 5 1.98± 0.05 3.03± 0.08 2.52± 0.03 0.11± 0.00 4.00± 0.00

DESED-FL IID 5 2.03± 0.09 2.98± 0.14 3.21± 0.20 0.07± 0.02 10.0± 0.00
DESED-FL Non-IID 5 1.99± 0.28 2.99± 0.15 3.08± 1.18 0.08± 0.02 9.65± 1.16
DESED-FL Eval 5 2.02± 0.04 3.01± 0.07 2.99± 0.04 0.09± 0.00 10.0± 0.00

In this section, we present a detailed view of the device data and distributions for the proposed IID and non-IID datasets,
DESED-FL and URBAN-FL. Table III lists detailed statistics regarding polyphony, i.e. the number of events occurring
simultaneously, number and duration of events per sound soundscape. The statistics indicate that the datasets all exhibit similar
characteristics, with the only significant different in the max durations between the DESED-FL and URBAN-FL datasets. This
is due to the nature of the source datasets. The max duration of the sound events in the URBAN-8K datasets is four seconds,
whereas in the DESED-FL source dataset, some events can be longer than four seconds so the max duration is limited to the
length of the soundscapes.

Figures 2 and 4 show the total duration of each of the sound events as distributed to the background noise classes for each of
the training and evaluation datasets of DESED-FL and URBAN-FL respectively. As expected, the distributions of data between
each background. The data was distributed evenly amongst background classes to mitigate any potential background biases in
the final trained models. Figures 3 and 5, provide a detailed look at the individual client distributions. The event durations bar
charts for the IID data, in Figures 3a and 5a, show that the sound events are identically distributed for all devices. Whereas,
in the non-IID data, shown in Figures 3b and 5b, there are five different distributions for each background class, indicated by
the surrounding green boxes. This distribution scheme reduces the potential for background bias by ensuring all sound events
are distributed among each background type while ensuring non-IID client devices.



0

1000

2000

3000

4000

5000
apartment_room computer_interior computer_lab emergency_staircase library

(a) DESED-FL IID training data

0

1000

2000

3000

4000

5000
apartment_room computer_interior computer_lab emergency_staircase library

(b) DESED-FL non-IID training data

0

200

400

600

800

apartment_room computer_interior computer_lab emergency_staircase library
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Fig. 2: DESED-FL: Total sound event durations for each background for the two versions of training data and the evaluation
dataset. The sound event classes from left to right are: alarm bell ringing, blender, cat, dishes, dog, electric shaver toothbrush,
frying, running water, speech, and vacuum cleaner.



(a) DESED-FL IID training data event duration per client

(b) DESED-FL non-IID training data event duration per client

Fig. 3: Distribution of data, by event duration, to client devices for the DESED-FL dataset. Each row shows the distribution
for a specific background type. The green boxes indicate the five different class distribution groupings for the non-IID dataset.
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Fig. 4: URBAN-FL: Total sound event durations for each background for the two versions of training data and the evaluation
dataset. The sound event classes from left to right are: air conditioner, car horn, children playing, dog bark, drilling,
engine idling, gun shot, jackhammer, siren, street music



(a) URBAN-FL IID training data event duration per client

(b) URBAN-FL non-IID training data event duration per client

Fig. 5: Distribution of data, by event duration, to client devices for the URBAN-FL dataset. Each row shows the distribution
for a specific background type. The green boxes indicate the five different class distribution groupings for the non-IID dataset.



APPENDIX B
DETAILED ARCHITECTURES

In this section, we provide details on the three architectures used in our experiments on SED with FL to foster reproducibility
of baseline results on the proposed datasets. As baseline architectures we propose two standard CNN architectures, a small
one with close to 100 000 parameters and a medium-sized one. Additionally, we proprosed a medium-sized ResNet based
architecture.

TABLE IV: CNN-Base Architecture with 542 442 parameters

Layer Output Kernel Size Droput

Conv Block 16 (3, 3) 0.20
Avg Pooling - (2, 2) -
Conv Block 32 (3, 3) 0.20
Avg Pooling - (2, 2) -
Conv Block 64 (3, 3) 0.20
Avg Pooling - (1, 2) -
Conv Block 128 (3, 3) 0.20
Avg Pooling - (1, 2) -
Conv Block 128 (3, 3) 0.20
Avg Pooling - (1, 2) -
Conv Block 128 (3, 3) 0.20
Avg Pooling - (1, 2) -
Conv Block 128 (3, 3) 0.20
Global Avg Pooling - - -
Dense 10 - -
Sigmoid - - -

Both CNN-Base and CNN-Small are standard CNN architectures composed of convolution blocks each followed by a pooling
layer. Each convolutional block, shown in Figure 6b, contains a 2D convolution, a normalization layer, an activation layer,
and 20% dropout. Global pooling is performed before the final output layer. CNN-Base is based on the baseline architecture
from the DCASE 2019 challenge for SED [App1] without the recurrent layers, and is composed of seven convolutional
blocks. The recurrent layers were removed in order to maintain compatibility with neuromorphic hardware. The architecture
and hyperparameters are listed in Table IV. The resulting architecture contains 542 442 trainable parameters.

TABLE V: small CNN (CNN-S) Architecture with 115.434 parameters

Layer Output Kernel Size Dropout

Conv Block 16 (3, 3) 0.2
Pooling 2D - (2, 2) -
Conv Block 32 (3, 3) 0.2
Pooling 2D - (2, 2) -
Conv Block 64 (3, 3) 0.2
Pooling 2D - (2, 2) -
Conv Block 128 (3, 3) 0.2
Global Pooling - - -
Dense 128 - -
ReLu - - -
Dense 10 - -
Sigmoid - - -

CNN-Small is a CNN that was designed using Bayesian Optimization neural architecture search [20]4 to keep the model
close to 100 000 parameters. The final architecture is composed of four convolutional blocks, seen in 6b and a classification
network with one hidden layer and one output layer, for a total of 115 434 parameters. The architecture and hyperparameters
are listed in Table IV.

4Implemented with http://github.com/fmfn/BayesianOptimization

http://github.com/fmfn/BayesianOptimization
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Fig. 6: Blocks used for the ResNet and CNN architectures

TABLE VI: Resnet Architecture with 422 090 parameters

Layer Output Kernel Size 1 Kernel Size 2 Dropout

Conv 2D 64 (5, 5) - -
Relu - - - -
ResNet Block 64 (3, 3) (1, 1) 0.10
Avg Pooling - (2, 2) - -
ResNet Block 64 (3, 3) (3, 3) 0.10
Avg Pooling - (2, 2) - -
ResNet Block 64 (3, 3) (3, 3) 0.10
Avg Pooling - (2, 2) - -
ResNet Block 128 (3, 3) (1, 1) 0.10
Avg Pooling - (2, 2) - -
ResNet Block 256 (1, 1) (1, 1) 0.10
Avg Global Pooling - - - -
Dense 10 - - -
Sigmoid - - - -

The ResNet architecture is composed of ResNet blocks with IC layers as proposed by Chen et al. [21] shown in Fig. 6a
with hyperparameters inspired by Koutini et al. [19] to minimize the receptive field of the model. The IC blocks contain
a normalization layer followed by dropout. For additional regularization, l2 weight regularization is performed as well as
disabling of centering and scaling during the normalization process [App5]. The final architecture contains 422 090 trainable
parameters.



APPENDIX C
EXTENDED RESULTS

In this section, we present extended results from our FL experiments. In addition, to rp = 0.5, presented in the main article,
results for rp = {0.25, 1.0} are shown in Figures 7 and 8. The percentage of clients involved in a training round has minimal
effects on the training peformance for IID data, while in the case of non-IID training is more stabilized as the percentage
increases. This is most likely a result of the central server receiving weight gradients from all possible distributions at each
training round.
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Fig. 7: DESED-FL: Federated Learning F1 (micro average) Score on Validation Data
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Fig. 8: URBAN-FL: Federated Learning F1 (micro average) Score on Validation Data
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