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Abstract—In large-scale optimization, the presence of nons-
mooth and nonconvex terms in a given problem typically makes
it hard to solve. A popular approach to address nonsmooth terms
in convex optimization is to approximate them with their respec-
tive Moreau envelopes. In this work, we study the use of Lasry–
Lions double envelopes to approximate nonsmooth terms that are
also not convex. These envelopes are an extension of the Moreau
ones but exhibit an additional smoothness property that makes
them amenable to fast optimization algorithms. Lasry–Lions en-
velopes can also be seen as an “intermediate” between a given
function and its convex envelope, and we make use of this prop-
erty to develop a method that builds a sequence of approximate
subproblems that are easier to solve than the original problem.
We discuss convergence properties of this method when used to
address composite minimization problems; additionally, based on
a number of experiments, we discuss settings where it may be
more useful than classical alternatives in two domains: signal
decoding and spectral unmixing.

Index Terms—Nonsmooth nonconvex optimization, hyperspec-
tral imaging, Lasry–Lions smoothing.

I. Introduction

Many problems in signal processing are formulated as com-
posite problems of the form

minimize
x∈�n

ϕ(x) B g(x) + h(x), (I.1)

where g : �n → � is a data-fitting term and h : �n → � acts
as a regularizer or as a constraint. These problems are typically
faced with a number of challenges: they involve a very large
number of variables, they are ill posed, and their data-fitting
and regularizer terms are nonsmooth and nonconvex. As an ex-
ample, consider that one wishes to solve a regression problem
whose solution is known to be sparse. One may use the so-
called `0 pseudo-norm as a regularizer, i.e., h = ‖ · ‖0, which
measures the number of nonzeros entries of a given vector.
Finding global solutions to large-scale problems involving it
is impractical, since this function is nonsmooth and noncon-
vex, and these problems are often approached by replacing
it with surrogates, such as the `1 norm, which allow one to
use methods that are more computationally tractable. Under
certain conditions on g, both approaches produce equivalent
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solutions [1], but these conditions are often violated. Conse-
quently, it is of interest to solve the problem with the non-
convex regularizer. Perhaps surprisingly, in practice it is not
always the case that the use of the `0 pseudo-norm instead
of the `1 surrogate will produce a solution that is more use-
ful, due to either the inherent ill posedness of the problem or
wrong modeling assumptions on g. However, recent work has
presented experimental evidence that this solution may in fact
be more useful in certain noise regimes [2], [3], and has val-
idated the idea that a combination of the `0 regularizer with
additional `1 or `2 terms produces the most useful results for
the different noise regimes of practical interest [4].

In this work, we discuss a method that makes use of the
Lasry–Lions double envelope to build surrogates of nonsmooth
nonconvex functions. For a proper, lower semicontinuous (lsc)
function h : �n → � and parameters λ > µ > 0, its λ-Moreau
envelope is

hλ(x) B inf
w

{
h(w) + 1

2λ ‖w − x‖2
}

and its (λ, µ)-Lasry–Lions double envelope is

hλ,µ(x) B −(−hλ)µ(x) = sup
w

{
f λ(w) − 1

2µ‖w − x‖2
}
. (I.2)

Replacing h in (I.1) with its envelope hλ,µ—which, e.g., can
be made for the `0 pseudo-norm or the indicator of a noncon-
vex set—furnishes approximate subproblems arbitrarily close
to the original one and that are, in a way to be made clearer
in a later section, “less” nonconvex. We also show that these
problems are smooth, and hence can be tackled via fast smooth
optimization solvers. We make use of the surrogate problems
in a way that mimics the behavior of homotopy methods for
systems of nonlinear equations or of penalty methods for con-
strained optimization: we solve a sequence of subproblems
that increasingly approximate the original problem, and use
the solution of a given subproblem to inform the initial es-
timate of the following one. As we show in Section III, the
sequence of global minimizers of these subproblems converges
to the global minimizer of (I.1). We motivate the use of this
method in two ways. First, we argue that the use of Lasry–
Lions double envelopes provides a way to systematically pro-
duce surrogates of nonconvex functions that is useful from a
computational perspective, in the sense just described. Second,
its use also seems to have benefits in terms of the solutions



that are found through it. In fact, the Lasry–Lions envelope
of the `0 pseudo-norm can be seen as a combination of non-
convex and convex terms. This combination is different from
the combinations of the `0 regularizer with convex terms de-
scribed above but, when compared to the use of the pure `0
regularizer, can be said to be less “aggressive”, in the sense
used in [3] when referring to the bias–variance trade-off issue
present in estimation problems.

To the best of our knowledge, the use of the Lasry–Lions
envelope as described seems to be new, but there are some
connections to existing approaches in the literature. For ex-
ample, there is a family of methods that addresses the prob-
lems of `0-regularized least squares and of rank-constrained
matrix approximation by replacing the nonconvex terms with
others that are still nonconvex but more tractable; addition-
ally, results associating the minimizers of both formulations
exist [5]–[7]. The connections to our work comes from the
fact that these replacements correspond to the proximal hull
of certain functions—the λ-proximal hull of function h cor-
responds to making µ = λ in (I.2), which we denote by hλ,λ.
Unlike the Lasry–Lions envelope, the proximal hull is not nec-
essarily smooth.

The structure of this work is as follows. In Section II, we
briefly discuss a number of properties of the Lasry–Lions dou-
ble envelope as well as some examples of interest. In Sec-
tion III, we study the homotopy approach that makes use of
the Lasry–Lions envelope, and discuss a practical implementa-
tion of it. In Section IV, we present numerical experiments in
signal decoding and spectral unmixing. Section V concludes.

II. The Lasry–Lions double envelope

We start by stating our assumptions for (I.1) and then list
some results concerning the Lasry–Lions double envelope:
Facts II.1 and II.2 are concerned with some of its basic iden-
tities and properties, and Proposition II.3 and Corollary II.4
with its smoothness characteristics. We finish the section with
two examples of double envelopes: the indicator function of
the set {−1, 1} in Example II.5 and the `0 pseudo-norm in Ex-
ample II.6; we illustrate the latter in Figure 1.

A detailed account of the notions used throughout this work
can be found in [8]. Bold lowercase letters denote vectors, bold
uppercase letters denote matrices, [a]i denotes the i-th element
of a vector a, and [A]: j denotes the j-th column of a matrix
A. We let jB 1

2 ‖ · ‖
2.

Assumption I. In problem (I.1), the following hold:

a1 g ∈ C1(�n);
a2 h : �m → � is proper, lsc, and prox-bounded;
a3 a solution exists: arg minϕ , ∅.

Fact II.1 (Basic identities of the Lasry–Lions envelope). The
following hold for h : �n → � and λ ≥ µ > 0:

(i) hλ,µ = (hλ,λ)λ−µ = (hλ−µ)µ,µ;
(ii) hλ = λ−1j−

(
h + λ−1j

)∗(λ−1 · );
(iii) hλ,λ =

(
h + λ−1j

)∗∗
− λ−1j.

If, additionally, λ > µ, then by letting c B λ(λ−µ)
µ

, it also holds
that

(iv) hλ,µ = (λ − µ)−1j−
[(

h + λ−1j
)∗]1/c( ·

λ−µ

)
;

(v) hλ,µ =
[(

h + λ−1j
)∗∗]c( λ

µ
·
)
− µ−1j.

Detail. II.1(i)–II.1(iii): follow from [8, Ex.s 1.46, 11.26(c)];
II.1(iv), II.1(v): from II.1(i)–II.1(iii).

Fact II.2 (Basic properties of the Lasry–Lions envelope). Let
h : �n → � be proper, lsc, and γh-prox-bounded. Then, hλ,µ

is proper and lsc for every 0 < µ ≤ λ < γh. Moreover
(i) hλ ≤ hλ,µ ≤ hλ−µ ≤ h;

(ii) hλ,µ is pointwise increasing wrt µ and decreasing both
wrt λ and λ − µ;

(iii) let x, x̄ ∈ �n; then hλ,µ(x)→ h(x̄) as x→ x̄ and 0 < µ ≤
λ→ 0 in such a way that ‖x−x̄‖

λ
is bounded;

(iv) dom hλ,λ = conv dom h;
(v) inf hλ,µ = inf h and arg min hλ,µ = arg min h;

(vi) hλ,µ is µ-proximal;
(vii) let h : �n1×· · ·×�nm → � be of the form h =

∑m
k=1 hk(xk),

where xk ∈ �
nk for all k ∈ {1, · · · ,m}; then

hλ,µ(x) =

m∑
k=1

hλ,µk (xk).

Detail. II.2(i), II.2(v): follow from [8, 1.46]; II.2(ii)–II.2(vi):
from [8, 1.25, 1.44] and (II.1); II.2(vii): from (I.2).

Proposition II.3 (Smoothness of the Lasry–Lions envelopes).
Let h : �n → � be proper, lsc, and γh-prox-bounded. Then,
for every 0 < µ < λ < γh the Lasry–Lions envelope hλ,µ is
Lhλ,µ -Lipschitz-continuously differentiable with gradient

∇hλ,µ = λ
µ

P − 1
µ
id, (II.1)

where P B proxc−1(h+λ−1j)∗ (
·

λ−µ
) and c B λ(λ−µ)

µ
is as in

Fact II.1. In fact, for every x, y ∈ �n it holds that

σhλ,µ‖x − y‖2 ≤ 〈∇hλ,µ(x) − ∇hλ,µ(y), x − y〉 ≤ − σ−hλ,µ‖x − y‖2

for some σhλ,µ ≥ −
1
µ

and σ−hλ,µ ≥ −
1
λ−µ

, and in particular
Lhλ,µ ≤ max

{
1
µ
, 1
λ−µ

}
. Moreover, the estimates can be tightened

as
(i) σhλ,µ ≥

σh
1+(λ−µ)σh

and Lhλ,µ ≤ max
{

|σh |

1+(λ−µ)σh
, 1
λ−µ

}
if h is

σh-hypoconvex;
(ii) σ−hλ,µ ≥ −

Lh
1+(λ−µ)Lh

and Lhλ,µ ≤
Lh

1+(λ−µ)Lh
if h is Lh-smooth.

Proof. The expression for the gradient comes from the iden-
tity in Fact II.1(iv) together with the known formula ∇φ1/c =

c(id − proxφ/c), holding for the proper, lsc, convex function
φ = (h + λ−1j)∗. In turn, the general bounds on the inner
product follow from the monotonicity and nonexpansiveness
of proxφ/c. When h is σh-hypoconvex, then φ is Lφ-smooth
(and (−Lφ)-hypoconvex) with Lφ = λ

1+λσh
, and consequently

proxφ/c is (1 + c−1Lφ)−1-strongly monotone [9, Lem. 5]. Sim-
ilarly, when h is Lh-smooth (hence (−L f )-hypoconvex), then
φ is σφ-strongly convex with σφ = λ

1+λLh
, and proxφ/c is thus

(1 + c−1σφ)-contractive. By using these estimates, the tighter
values as in the statement are obtained.



From the convex relaxation
As λ > µ → ∞ with λ − µ → 0, the
Lasry–Lions envelopes hλ,µ converge to
the convex hull of the original function
h∗∗ = δ[−1,1] (red).

to the original problem
As 0 < µ < λ → 0, the Lasry–Lions en-
velopes hλ,µ converge to the original func-
tion h = δ{±1}.

in a smooth fashion.
Different approximations of extended-real-
valued proximal hulls, strictly continu-
ous Moreau envelopes, and smooth Lasry–
Lions envelopes.

Figure 1: Approximations with Lasry–Lions envelopes hλ,µ (blue), proximal hulls hλ,λ (brown), and Moreau envelopes hλ (green) of the
nonconvex, nonsmooth, extended-real-valued function h = δ{±1} (black).

Corollary II.4. For x ∈ �n and 0 < µ < λ < γh it holds that

d = ∇hλ,µ(x) ⇔ x − (λ − µ)d ∈ conv proxλh(x + µd).

Proof. Denoting c B λ(λ−µ)
µ

, it follows from (II.1) that d =

∇hλ,µ(x) holds iff
µd+x
λ

= proxc−1(h+λ−1j)∗
( x
λ−µ

)
⇔ c

(
x
λ−µ
−

µd+x
λ

)
∈ ∂(h + λ−1j)∗

(
µd+x
λ

)
,

where the last equivalence owes to convexity of (h+λ−1j)∗. It
follows from Fact II.1(ii) that the latter subdifferential expands
to µd+x+λ∂(−hλ)(µd+x), which in turn equals conv proxλh(x+

µd) by virtue of [8, Ex. 10.32]. A direct computation reveals
that the left-hand side of the inclusion is x − (λ − µ)d, which
concludes the proof.

Example II.5. Consider h : �→ � : x 7→ δ{±1}(x). Then,

hλ(x) =
(1 − |x|)2

2λ
, hλ,λ(x) =

{
+∞ |x| > µ/λ
1−x2

2λ otherwise,

hλ,µ(x) =

 (1−|x|)2

2(λ−µ) |x| > µ/λ
1

2λ −
x2

2µ otherwise,
∇hλ,µ(x) =

{ x−sgn x
λ−µ

|x| > µ/λ

− x
µ

otherwise.

Additionally, from Fact II.2(vii), for h : �n → � : x 7→
δ{±1}n (x) we have hλ,µ(x) =

∑n
k=1 δ

λ,µ
{±1}([x]k).

Example II.6. Consider h : �→ � : x 7→ |x|0 =

{
1, x , 0
0, x = 0 .

Then,

hλ(x) =

{ 1
2λ x2 if |x| ≤

√
2λ,

1 if |x| ≥
√

2λ,

hλ,λ(x) =

1 − 1
2λ

(
|x| −

√
2λ

)2
if |x| ≤

√
2λ,

1 if |x| ≥
√

2λ,

hλ,µ(x) =


1

2(λ−µ) x2 if |x| ≤ (1 − µ/λ)
√

2λ,

1 − 1
2µ

(
|x| −

√
2λ

)2
if |x| ∈ [(1 − µ/λ)

√
2λ,
√

2λ],
1 if |x| ≥

√
2λ,

and

∇hλ,µ(x) =


1

(λ−µ) x if |x| ≤ (1 − µ/λ)
√

2λ,
− 1
µ

(
|x| −

√
2λ

)
if |x| ∈ [(1 − µ/λ)

√
2λ,
√

2λ],
0 |x| ≥

√
2λ.

For h : �n → � : x 7→ ‖(x)‖0, hλ,µ(x) =
∑n

k=1 (|[x]k |0)λ,µ.

III. A homotopy approach to nonconvex minimization

This section describes a new method to address nonsmooth
nonconvex composite problems. We state global convergence
properties and then discuss a practical implementation of it.

The approximating properties of the Lasry–Lions envelope
naturally lead one to consider homotopy approaches to ad-
dress (I.1). When Assumption I.a2 is satisfied, one has that

ϕ(x) = lim
µ<λ→0

{
g(x) + hλ,µ(x)

}
holds for every x ∈ �n, and hλ,µ is a Lipschitz-differentiable
function whenever 0 < µ < λ < γh. In what follows, it will
be assumed without mention that λ and µ comply with these
bounds. By replacing the regularizer in (I.1) with its Lasry–
Lions envelope, we have:

minimize
x∈�n

ϕλ,µ(x) B g(x) + hλ,µ(x)).

Theorem III.1. Additionally to Assumption I, suppose that
there exist 0 < µ̄ < λ̄ < γh such that ϕλ̄,µ̄ is level bounded.
Given (εk, λk, µk)k∈� satisfying λ̄ ≤ λk > µk ≥ µ̄ with λ → 0,
0 ≤ εk → 0, and such that ϕλk ,µk is pointwise increasing in
k, for every k let x?k ∈ εk-arg minϕλk ,µk and x̃k be such that
∇ϕλk ,µk (x̃k)→ 0 as k → ∞. The following hold:

(i) minϕλk ,µk → minϕ as k → ∞;
(ii) (x?k )k∈� is bounded and all its cluster points lie in

arg minϕ.

Proof. The pointwise monotonicity and Fact II.2(iii) ensure
through [8, Prop. 7.4(d)] that ϕλk ,µk epi-converges to ϕ as k →
∞. In turn, owing to the level boundedness assumption, the
proof follows by invoking [8, Ex. 7.32(a) and Thm. 7.33].



Algorithm 1 A practical implementation.

Choose x0,+ ∈ �n, λ1 > µ1 > 0 and τ1 > 0
k ← 1

1.1: while stopping criterion is not satisfied do
1.2: Find an approximate minimizer xk,+ of ϕλk ,µk (·)

with starting point xk,1 B xk−1,+ and terminating when∥∥∥∇ϕλk ,µk (·)
∥∥∥ ≤ τk

1.3: Choose λk+1 < λk

1.4: Choose µk+1 < µk with λk+1 ≥ µk+1

1.5: Choose τk+1 > 0 such that limk τ
k = 0

1.6: k ← k + 1

A practical implementation of a method informed by these
results is given in Algorithm 1. In more detail, for the experi-
ments detailed in Section IV, we made the following choices:
we let τ1 = 10−3; Step 1.2 can be implemented by any smooth
minimization algorithm, and we used L-BFGS due to its rel-
atively fast properties and low memory requirements; finally,
in Step 1.5 we made τk+1 = 0.9 × τk.

IV. Numerical experiments

We discuss a number of experiments performed to evaluate
the proposed method of Section III in two problems: signal
decoding and spectral unmixing. We make use of the noncon-
vex functions discussed in Examples II.5 and II.6 to formulate
these problems.

A. Signal decoding

We approach the problem of binary-signal decoding through
a constrained least-squares formulation:

minimize
x∈�P

‖y −Hx‖2, subject to x ∈ {0, 1}P, (IV.1)

where x ∈ �P, y ∈ �N are the received and transmitted sig-
nals, respectively, and H ∈ �N×P is the transfer matrix of
a given channel. Since this problem’s constraint is noncon-
vex, a convex alternative to this problem is the one given by
replacing the constraint with x ∈ [0, 1]P. This alternative gen-
erates estimates that are not guaranteed to be binary numbers,
so they are usually projected into the original problem’s fea-
sible set. We randomly generated a number of experiments
with varying problem dimensionality (both over- and under-
determined formulations), noise levels, and conditioning of
the matrix H. We compared the proposed method with an
alternating-direction method of multipliers (ADMM) imple-
mentation, with an ADMM implementation of the aforemen-
tioned convex relaxation, and with a simple least-squares ap-
proach to the problem (i.e., without constraints); we denote the
four methods by LL, AN, AR, and LS, respectively. We eval-
uated their performance by computing the binary-error rate
(BER) relative to the transmitted signal. Overall, we found
that the proposed method performed similarly or better than
the others when N < P, and we present the performance of the
three methods over examples of such settings in Table I. In
more detail, the problem was set as follows: we started by gen-
erating the transmitted signal assuming that it was drawn i.i.d.

Table I: Average BER [%] for estimates of the four methods.

N P ρ SNR [dB] LS AR AN LL

20

40

0.0
30 47.15 11.35 32.30 15.40
20 47.45 14.05 33.30 17.20
10 47.35 21.90 31.30 21.90

0.5
30 45.75 12.70 32.15 16.50
20 46.20 13.95 30.85 16.75
10 47.90 27.80 34.20 27.20

80

0.0
30 50.00 37.45 40.58 35.95
20 49.02 35.95 39.42 34.12
10 49.83 36.12 39.92 35.23

0.5
30 48.05 34.27 38.35 33.25
20 49.48 35.73 39.67 34.50
10 49.08 37.38 39.92 37.27

100

0.0
30 48.84 37.86 41.26 37.82
20 49.24 39.24 42.02 39.76
10 49.54 40.56 43.36 39.98

0.5
30 49.94 40.44 42.36 40.00
20 49.38 39.54 41.68 38.28
10 48.60 39.20 41.56 38.56

from a Bernoulli distribution, with equal probability of gener-
ating both symbols; we then generated the matrix H assuming
that its rows were drawn i.i.d. from a multivariate Gaussian
distribution with zero mean and covariance matrix Σ ∈ �P×P,
where [Σ]i j = ρ|i− j|; finally, we added i.i.d. noise drawn from a
Gaussian distribution such that its variance resulted in a given
signal-to-noise ratio (SNR). We tested the three methods by
running the experiment 50 times; at the end, we projected all
methods’ estimates into the set {0, 1}P. The algorithms’ pa-
rameters were tuned as follows: for LL, we let λ1 = 105 and
µ1 = 0.999 × λ1, and reduced these parameters by 90% ev-
ery iteration; in Section III, for AR and AN, we followed the
heuristic proposed in [10] to tune step sizes. The initial esti-
mate for AN, AN, and LL was the LS estimate, and we stopped
them either if the root-mean-squared error (RMSE) relative to
the transmitted signal was lower than 10−9 or after 103 itera-
tions. The experiments were conducted using MATLAB on a
machine with an Intel Core i7 CPU running at 2.5 GHz and
with 16 GB of DDR3 RAM.

B. Spectral unmixing

Hyperspectral images are multi-channel images with a rel-
atively large number of channels—usually known as spec-
tral bands—corresponding to short frequency ranges along the
electromagnetic spectrum. Frequently, their spatial resolution
is low, and it is of interest to disentangle the different spectral
components of a given pixel; a pixel typically corresponds to
a mixture of different materials. Spectral unmixing techniques
produce a set of spectral profiles, one for each material (known
as endmember), and a corresponding set of abundances, or per-
centages of occupation, for each endmember, in each pixel. We
consider that the set of spectral profiles is known through a
database of spectral signatures (i.e., a database of reflectance
profiles as a function of wavelength), and formulate the spec-
tral unmixing problem pixel-wise as an instance of the La-
grangian formulation of the best–subset-selection problem:

minimize
a j∈RP

‖[Yh]: j − Ua j‖
2
2 + β‖a j‖0, (IV.2)



Table II: Average RMSE, sensitivity [%], specificity [%], and
the value [×10−3] of the cost function (CF) for varying λ1 in
the LL method.

λ1 104 103 102 10 1 10−1 10−2

RMSE 0.035 0.032 0.034 0.047 0.056 0.044 0.038
Sens. 38 44 48 54 62 74 88
Spec. 95.89 94.70 90.36 82.10 67.95 52.60 37.08
CF 0.468 0.445 0.432 0.424 0.426 0.464 0.513

where a j ∈ �
P is the vector of each endmember’s abundances

for a given pixel, to be estimated, U ∈ �N×P is a matrix corre-
sponding to the spectral database, Yh ∈ �

N×M corresponds to
a matrix representation of a hyperspectral image with M pixels
(i.e., corresponds to the lexicographical ordering of a 3-D data
cube), and β is a regularization parameter. A typical convex
formulation of this problem is as the least absolute shrinkage
and selection operator (LASSO), where ‖a j‖0 is replaced by
‖a j‖1. Constraints such as [a j]i ≥ 0 for i = {1, · · · , P} are also
adopted but, for the comparison purposes of this work, we ig-
nored them. We randomly generated a number of experiments
with varying problem dimensionality (both over- and underde-
termined formulations) and noise levels. We used a real-world
spectral dictionary U: a selection of 498 different mineral types
from a USGS library, set up as detailed in [11]. We compared
the proposed method to an ADMM implementation, and we
denote the two methods by LL and AN, respectively. We eval-
uated them in two fronts: we computed the RMSE relative to
the original vector of abundances, and we evaluated the qual-
ity of the estimates’ support (i.e., the location of its nonzero
elements). The latter was evaluated by computing the sensitiv-
ity and specificity of the estimates as follows: we considered
a correctly estimated nonzero as a true positive (TP), and an
incorrectly assigned one as a false positive (FP); conversely,
a correctly estimated zero was considered as a true negative
(TN), and an incorrectly assigned one as a false negative (FN);
then, the sensitivity is given by T P

T P+FN and the specificity by
T N

FP+T N . A box plot of the RMSE, sensitivity, and specificity for
the two methods for one problem setting is given in Figure 2.
This problem was generated as follows: we start by generating
a vector of abundances with P = 224 and with 5 nonzero ele-
ments, where the abundances are drawn from a Dirichlet dis-
tribution; we made N = P and added Gaussian noise such that
it would result in a SNR of 30 dB. The parameters were tuned
as before except that, for LL, the initial points are λ1 = 103

and µ1 = λ1

2 , and we reduced them by 10% and 82% every it-
eration, respectively; the initial estimate was considered to be
a vector of zeros and the regularization parameter was manu-
ally set to β = 10−6, which we found produced estimates with
a support similar to the simulated one. The proposed method,
in virtue of its tuning parameters, allows for some flexibility
in how “aggressively” it selects nonzero elements. In Table II,
and for the problem setting just described, we show how a
progressively lower λ1—with still making µ1 = λ1

2 and re-
ducing those as indicated—finds estimates with very different
sensitivity and specificity.

AN LL

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

RMSE

AN LL

0

10

20

30

40

50

60

70

80

90

100
Sensitivity [%]

AN LL

0

10

20

30

40

50

60

70

80

90

100
Specificity [%]

Figure 2: Average RMSE, sensitivity, and specificity.

V. Conclusions
We introduced a novel method to address nonsmooth non-

convex composite-minimization problems, based on Lasry–
Lions double envelopes. This method has very broad appli-
cations, and it seems suitable for settings of great practical
interest in a number of signal processing problems, as sug-
gested by experiments. When compared to classical methods,
the tuning of its inner parameters allows for greater flexibil-
ity in the choice of the type of solutions that are sought. In
future work, we will study techniques to automatically tune
these parameters.
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