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Abstract—In real scenarios, it is often necessary and significant
to control the inference speed of speech enhancement systems
under different conditions. To this end, we propose a stage-wise
adaptive inference approach with early exit mechanism for pro-
gressive speech enhancement. Specifically, in each stage, once the
spectral distance between adjacent stages lowers the empirically
preset threshold, the inference will terminate and output the
estimation, which can effectively accelerate the inference speed.
To further improve the performance of existing speech enhance-
ment systems, PL-CRN++ is proposed, which is an improved
version over our preliminary work PL-CRN and combines stage
recurrent mechanism and complex spectral mapping. Extensive
experiments are conducted on the TIMIT corpus, the results
demonstrate the superiority of our system over state-of-the-art
baselines in terms of PESQ, ESTOI and DNSMOS. Moreover,
by adjusting the threshold, we can easily control the inference
efficiency while sustaining the system performance.

Index Terms—speech enhancement, early exit, progressive
learning, complex spectral mapping, stage recurrent mechanism

I. INTRODUCTION

Speech enhancement (SE) aims to extract the target speech
signals from the corrupted noisy mixtures, facilitating the ap-
plication of speech techniques in real scenarios, like telecom-
munication systems and hearing assistant devices [1]. Thanks
to the development of deep neural networks (DNNs), the
performance of SE systems are notably boosted in recent years
with the help of complicated network topology, including feed-
forward layers [2], convolutional neural networks (CNNs) [4],
[5], long-short term memory units (LSTMs) [6], and self-
attention mechanism [7].

Motivated by curriculum learning concept [8], progressive
learning (PL) based SE algorithms begin to thrive recently [9]–
[11], which have been demonstrated to exhibit better perfor-
mance over the conventional “black-box” DNN framework.
Different from the previous works where the whole mapping
process is viewed as agnostic, PL explicitly decomposes the
original difficult task into several easier sub-problems and the
speech can be recovered in a stage-wise manner. Despite the
advantages of multi-stage based SE algorithms, they usually
suffer from the “heavy run-time delay” problem, which can
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be elaborated from two perspectives. On the one hand, for
real-time devices, the processing delay needs to be considered
seriously. However, the number of network depth will linearly
grow with the increase of training stages, which usually
brings linear-proportional processing delay [10]. On the other
hand, as the inference of current stage usually concerns the
estimation results from previous stages, the system has to wait
until the previous stages are finished, which also heavily limits
the parallelism of SE systems.

To mitigate the problem above, an Early Exit Mechanism
named EEM has been applied into pretrained language model
(PLM) [12] and multi-channel source separation (MSS) [13].
Inspired by this idea, we propose a new EEM method for
adaptive inference with more fast and robust speech enhance-
ment performance. Specifically, a pre-defined threshold is set
beforehand. During the inference period, the calculation will
not be stopped until the estimation gap between the adjacent
stages is lower than the threshold. In this way, the model can
early exit without passing through all layers. As the algorithm
only works in the inference stage, it is simple to operate and
can be generalized to various SE systems. The advantages of
the proposed EEM can be illustrated as two-fold. Firstly, we
can adaptively switch the output result depending on the device
requirement. For example, for the devices with strict run-
time delay requirement, faster inference time can be achieved
by setting suitable threshold values. Secondly, we can also
adaptively control the inference time depending on the SNR
requirement. For example, in low SNRs, we can pass more
stages to generate more clear speech while fewer stages are
needed in high SNRs.

Recently, the benefit of phase recovery in improving speech
perception especially in low SNRs has been well investi-
gated [14]–[17]. In our preliminary study [10], the PL-CRN
only works for magnitude enhancement. In this paper, we
further propose an improved PL-CRN called PL-CRN++.
Several strategies are adopted. Firstly, instead of estimating
magnitude, both real and imaginary (RI) components of the
spectrum are estimated simultaneously [14]. Besides, all the
(de)convolution layers in the encoder and decoder modules
are replaced by the gated linear unit (GLU) formats [18].
In addition, rather than simply concatenate the outputs from
previous stages along the channel dimension as the input
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of current stage, we adopt a stage recurrent mechanism to
effectively grasp the sequence dependency across different
stages [16].

The rest of the paper is organized as follows. In Section II,
both early exit mechanism and the utilized network are in-
troduced. In Section III, the experimental settings are given.
Experimental results and analysis are presented in Section IV.
Some conclusions are drawn in Section V.

II. PROPOSED APPROACH

A. Progressive Learning for Speech Enhancement

With short-time Fourier transform (STFT), let X (k, l),
S (k, l), and N (k, l) denote the complex values of noisy,
clean, and noise signals in the T-F domain with the frequency
index of k and time index of l. The problem is formulated as:

X (k, l) = S (k, l) +N (k, l) , k ∈ [1,K], l ∈ [1, L], (1)

where K and L denote the number of frequency bins and time
frames, respectively. For better readability, we will omit the
T-F index if no confusion arises. In the progressive learning
based speech enhancement approaches, the whole denoising
process is split into several stages, and the intermediate
targets are defined as the SNR-improved spectra over the
noisy version. Let Q denote the total stage number, then the
intermediate targets are defined as

{
S1, S2, · · · , SQ

}
. In the

qth stage, the mapping process can be presented as:

S̃q = Gq
(
X, S̃1, · · · , S̃q−1; Θq

)
, (2)

where Gq (·) and Θq denote the mapping function and the
parameter set in the qth stage, respectively. S̃q refers to
the estimated complex spectrum in the qth stage. To enable
the network training, we concatenate the real and imaginary
components of the spectrum along the channel axis, i.e.,{
X, S̃1, · · · S̃Q

}
∈ R2×K×L. Note that in the current stage,

the previous outputs together with the noisy complex spectrum
are involved as the inputs to mitigate the information loss
during the training process [9].

B. Early Exit Mechanism

Early exit mechanism (EEM) is originally proposed in [19]
to mitigate the “overthinking” problem during the decision-
making process. That is, for many input samples, shallow
representation is already adequate for network classification. In
this paper, we rethink this problem from another perspective.
In real scenarios, the requirement for inference speed varies
among different devices. Besides, noise intensity in the real
environment usually changes largely. When the SNR is quite
low, it is necessary to pass more stages to generate the speech
with better quality. However, for high SNR cases, fewer stages
are needed to yield the enhanced speech with adequate quality.

Informally, we define τ as the threshold, which is manually
set beforehand. For qth stage, the adjacent spectral distance
Distq is defined as:

Distq ,
1

ZLK

L∑
l=1

K∑
k=1

∥∥∥S̃q (k, l) , S̃q−1 (k, l)
∥∥∥2
2
, (3)

The normalization term Z is set to mitigate the influence of
magnitude scale, defined as follows.

Z ,
1

LK

L∑
l=1

K∑
k=1

‖X(k, l)‖22 , (4)

Note that for q = 1 case, the distance is calculated between
the estimation in the first stage S̃1 and the noisy version, i.e.,
S̃0 ≡ X .

As shown in Figure 1(a), during the run time, in each stage,
the estimation gap needs to be calculated. If Distq < τ , we
will terminate the inference and the estimated spectrum in
the current stage will be chosen as the final enhanced result.
We argue that the dominant noise components tend to be
suppressed in the first several stages, leading to the gradual
decrease of the spectral distance in the latter. Therefore, a
larger threshold value will result in faster inference termination
accordingly, and vice versa. The experiments are conducted in
Sec. IV to support the point. As a result, we can dynamically
control the inference efficiency by setting different thresholds
empirically.

C. PL-CRN++

The proposed framework is presented in Figure 1(a), which
is composed of multiple stages. Within each stage, the stage-
recurrent neural network (SRNN) is adopted to learn the
sequence information across stages [16]. PL-Cell takes a
typical “Encoder-LSTM-Decoder” topology [20] and is tasked
with mapping to the specific intermediate target. The overall
paradigm is similar to PL-CRN [10], except some improve-
ments are provided. Firstly, instead of estimating the spectral
magnitude, we take the complex spectral mapping strategy,
i.e., RI components serve as the input and target. In this way,
magnitude and phase can be recovered simultaneously, which
is beneficial to speech quality improvement. Secondly, similar
to [14], within each PL-Cell, we replace all the (de)convolution
layers in the encoder and decoder with the gated linear unit
(GLU) formats [18], where another convolutional branch with
a sigmoid activation function is introduced to recalibrate the
feature distribution in the major branch. Thirdly, motivated
by [16], we adopt the SRNN to establish the sequence depen-
dency across different stages, which is shown in Figure 1(c).

In each stage, the forward calculation process can be for-
mulated as:

ĥq = f2d conv

(
Cat[Xr, Xi, S̃

q−1
r , S̃q−1

i ]
)
, (5)

h(q) = fconvgru

(
ĥq, h(q−1)

)
, (6)

S̃q = fdecoder

(
flstm

(
fencoder

(
h(q)

)))
, (7)

where f2d conv , and fconvgru denote the functions of two-
dimensional (2-D) convolution and Conv-GRU [22] in the
SRNN. fencoder, flstm, and fdecoder are the functions of
the encoder, LSTM and decoder in the PL-Cell, respectively.
Cat[·] denotes the catenation operation along the channel axis.

Detailed network parameters are configured below. For all
the 2-D convolutions in PL-CRN++, the number of channels
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Figure 1. Proposed PL-CRN++ incorporating early exit mechanism. (a): overall flowchart of the proposed approach. (b): the pipeline detail of the PL-Cell.
(c): the pipeline detail of SRNN.

is 64 except the output, where the channel is set to 2 to
generate the real and imaginary parts. The kernel size and the
stride are (2, 3) and (1, 2) along the time and frequency axis,
respectively. To facilitate training convergence, after each 2-D
convolution, instance normalization (IN) [21] and Parameter
ReLU (PReLU) [23] are followed. For the encoder module,
five consecutive convolutional blocks are utilized to compress
the feature size while the decoder is the mirror version of the
encoder to reconstruct the spectrum. Two LSTM layers with
256 units are utilized as the sequence modeling module. Note
that, the parameter weights in each PL-Cell are not shared
while SRNN is reused in each stage.

D. Loss Function

Similar to [13], [19], we take the following weighted loss
for network training:

L =
1∑Q
q=1

Q∑
q=1

q
∥∥∥S̃q − Sq

∥∥∥2
2
, (8)

The behind rationale lies in that with the increase of stage
index, a larger loss will be given, corresponding to the relative
inference cost of each intermediate stage.

III. EXPERIMENTAL SETUP

A. Dataset

In this study, we conduct the experiments on the TIMIT
corpus [24]. 4620, 400, and 150 utterances are utilized for
training, validation, and testing, respectively. No utterance
overlap exists among the three parts. For noise-robust training,
around 20,000 noises are randomly selected from the DNS-
Challenge1 to obtain a 55 hours noise set for training. To create
multiple SNR-improved intermediate targets, we fix the total
stage number Q as 5. During each mixed process, a random
cut is generated to obtain a noise vector, which is subsequently

1https://github.com/microsoft/DNS-Challenge

mixed with a randomly chosen clean utterance. The SNR range
for training is [-5dB, 30dB] with 2dB interval. After an SNR
value is randomly selected, we improve the SNR by 10dB
after each stage and the target in the final stage is the clean
version. Totally, 100,000 pairs are created for training (around
85 hours).

For model evaluation, four challenging unseen noises are
selected, where babble, factory1, white from NOISEX92 [25],
and cafeteria noise from the CHIME3 dataset [26]. Four SNR
conditions are explored, namely -5dB, 0dB, 5dB, and 10dB.
150 pairs are generated for each case.

B. Parameter Configurations

All the utterances are sampled at 16kHz. The window size is
20ms with 50% overlap in adjacent frames. 320-point FFT is
utilized to extract 161-D spectral features. As complex spectral
mapping strategy is adopted, we concatenate the RI along
channel axis, i.e., Cat[Xr, Xi] ∈ R2×K×L. The model is
optimized by Adam [27]. The learning rate is initialized at 1e-
3, which will be halved if consecutive 3 loss increases arise.
The total epoch number is set to 50 with the batch number
being 8.

To analyze the impact of early exit mecha-
nism, we set multiple τ candidates, including
{+∞, 0.6, 0.2, 0.08, 0.04, 0.02, 0.01, 0}. We also evaluate the
performance with another three advanced baseline systems,
namely PL-LSTM [9], PL-CRN [10], and GCRN [14]. Both
PL-LSTM and PL-CRN belong to the PL family and we
also fix the stage number Q as 5. In [10], the LSTMs
within PL-CRN are shared across different stages and we
cancel the shared option in this study to boost the overall
performance. Note that, all the models are causal-designed
for fair comparison.

IV. RESULTS AND ANALYSIS

Two metrics are utilized to evaluate the objective perfor-
mance of different systems, namely perceptual evaluation of



Table I
EVALUATION RESULTS AMONG DIFFERENT MODELS IN TERMS OF PESQ, ESTOI AND DNSMOS FOR DIFFERENT SNRS. COMPARISON W.R.T. SPEED-UP

RATIO IS ALSO PRESENTED AMONG VARIOUS THRESHOLDS.

Metrics

G
at

e
SR

N
N

#Param
Speed-up ratio PESQ ESTOI(%) DNSMOS

SNR(dB) -5 0 5 10 Avg. -5 0 5 10 Avg. -5 0 5 10 Avg. -5 0 5 10 Avg.
Noisy - - - - - - - - 1.34 1.69 2.07 2.43 1.88 29.49 42.51 57.40 71.50 50.23 2.22 2.34 2.57 2.78 2.48

M
od

el
C

om
pa

ri
so

n PL-LSTM - - 38.13M - - - - - 1.67 2.05 2.43 2.77 2.23 36.44 51.14 65.28 75.28 57.03 2.51 2.63 2.82 3.02 2.75
PL-CRN - - 5.55M - - - - - 1.82 2.21 2.61 2.98 2.40 41.54 57.04 71.81 82.27 63.17 2.65 2.79 2.99 3.22 2.91
GCRN - - 18.16M - - - - - 1.88 2.37 2.82 3.16 2.56 51.30 68.69 81.06 88.18 72.31 2.88 3.11 3.35 3.56 3.23

PL-CRN++

% % 7.18M - - - - - 1.81 2.30 2.77 3.19 2.52 51.38 68.68 81.34 88.76 72.54 3.06 3.31 3.54 3.72 3.40
! % 9.09M - - - - - 1.95 2.39 2.83 3.23 2.60 53.38 69.98 82.17 89.10 73.66 3.10 3.34 3.56 3.73 3.43
% ! 7.52M - - - - - 1.83 2.31 2.78 3.19 2.53 53.80 70.46 82.71 89.54 74.13 3.12 3.37 3.56 3.75 3.45
! ! 9.61M - - - - - 1.94 2.44 2.87 3.26 2.63 56.35 72.55 83.86 90.23 75.75 3.16 3.43 3.65 3.81 3.51

E
ar

ly
E

xi
t

PL-CRN++ (τ = +∞) ! ! 9.61M 5.00× 5.00× 5.00× 5.00× 5.00× 1.66 2.05 2.43 2.80 2.23 35.27 50.59 67.01 80.09 58.24 2.48 2.68 2.88 3.13 2.79
PL-CRN++ (τ = 0.6) ! ! 9.61M 2.87× 4.46× 5.00× 5.00× 4.11× 1.85 2.08 2.43 2.80 2.29 42.01 52.11 67.01 80.09 60.30 2.65 2.71 2.88 3.13 2.84
PL-CRN++ (τ = 0.2) ! ! 9.61M 2.55× 2.92× 4.81× 5.00× 3.50× 1.91 2.29 2.64 2.80 2.41 44.35 60.85 75.39 80.13 65.18 2.72 2.91 3.14 3.14 2.98
PL-CRN++ (τ = 0.08) ! ! 9.61M 2.46× 2.59× 2.74× 4.97× 2.94× 2.02 2.43 2.75 3.02 2.55 50.15 66.90 78.61 85.99 70.41 2.95 3.18 3.28 3.46 3.22
PL-CRN++ (τ = 0.04) ! ! 9.61M 1.71× 1.77× 2.09× 2.58× 1.98× 2.02 2.45 2.83 3.12 2.60 52.29 68.69 81.00 87.83 72.45 3.00 3.23 3.43 3.59 3.31
PL-CRN++ (τ = 0.02) ! ! 9.61M 1.46× 1.53× 1.69× 1.95× 1.64× 1.99 2.46 2.86 3.19 2.63 54.70 71.17 82.66 88.94 74.37 3.08 3.31 3.51 3.68 3.40
PL-CRN++ (τ = 0.01) ! ! 9.61M 1.20× 1.20× 1.31× 1.58× 1.31× 1.95 2.44 2.86 3.24 2.62 55.90 72.20 83.61 89.79 75.38 3.14 3.39 3.61 3.74 3.47

PL-CRN++ (τ = 0) ! ! 9.61M 1.00× 1.00× 1.00× 1.00× 1.00× 1.94 2.44 2.87 3.26 2.63 56.35 72.55 83.83 90.23 75.75 3.16 3.43 3.65 3.81 3.51

speech quality (PESQ) [28], and extended short-time objective
intelligibility (ESTOI) [29]. Besides, to evaluate the subjective
quality, DNSMOS is also adopted, which is a robust non-
intrusive speech quality metric and well suitable for accurate
subjective rating [30].

A. Ablation Study

We investigate the effect of SRNN and gating branch in
the GLU, whose results are shown in the middle region of
Table. I. One can find that both two modules can effectively
improve the metric performance. For example, compared with
the naive PL-CRN++ (no gate and no SRNN), around 0.08 and
0.01 PESQ improvements are provided if SRNN and gating
branch are applied, respectively. For DNSMOS, the similar
tendency can be observed. Moreover, when both two modules
are applied, the performance of PL-CRN++ can be further
improved.

B. Metric Comparison Among Different Systems

We then compare our PL-CRN++ with another three base-
line systems, as shown in the top region of Table I. Several
observations can be made. Firstly, our PL-CRN++ notably
outperforms previous PL based systems, i.e., PL-LSTM and
PL-CRN. For example, in terms of PESQ, our system yields
around 0.40 and 0.23 improvements over PL-LSTM and PL-
CRN. A similar trend is also observed for ESTOI. It indicates
that by incorporating the stage recurrent mechanism and
complex spectral mapping, we can make further breakthrough
over current PL based algorithms. Secondly, compared with
GCRN, a state-of-the-art SE system with complex spectral
mapping, our system still yields consistent advantages. one
can observe that our system achieves around 0.07 and 3.44%
improvements in terms of PESQ and ESTOI, respectively,
which reveals the superiority of our approach. Thirdly, in
terms of subjective quality, our approach sizably surpasses
previous systems. For DNSMOS, our approach yields 0.76,

0.60, and 0.28 improvements over PL-LSTM, PL-CRN, and
GCRN, respectively. It shows that our system can dramatically
improve the subjective quality of enhanced speech, which is
quite beneficial to speech perception under noisy conditions.

C. The Effect of Early Exit Mechanism

We adopt the speed-up ratio [31] as the criterion to analyze
the effect of early exit mechanism2, and a larger value indicates
faster inference time. From the results in the bottom region of
Table I, several interesting observations can be made. Firstly,
the decrease of τ will bring a smaller speed-up ratio, i.e.,
more inference cost will arise. This is because the inference
will terminate as long as the adjacent spectral distance Distq
lowers the threshold. Therefore, larger as τ is, easier for the
system to exit, and vice versa. Note that τ = +∞ and τ = 0
are two special cases, where the inference will terminate at the
end of the first stage anyway for the former, and all the stages
have to be passed for the latter. Secondly, for a fixed τ , the
increase of the input SNR will bring a larger speed-up ratio.
We argue that for low SNR cases, noise components usually
dominate the spectrum, so the adjacent spectral distance is
relatively larger, and more stages are needed to meet the
threshold. However, in the high SNRs, fewer noise components
exist and can be easily removed at the early stage.

Figure 2 presents the Distq at different stages under
different input SNR conditions. Logarithm scale is adopted
for better visualization. One can find that the distance will
gradually decrease with the increase of stage index, indicating
that in the PL based enhancement algorithms, more noises tend
to be removed in the early stage and the late stages are mainly
tasked with minor spectral refinement, which also follows the
“from coarse to fine” logic. Besides, higher SNRs will lead

2Within each stage, the same forward stream is adopted, leading to the
same FLOPs. So speed-up ratio can be approximated as the ratio between the
total stage index and the real stage index induced by early exit mechanism.
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Figure 2. Adjacent spectral distance Disti under different SNRs. logarithm
operation is adopted for better visualization.

to smaller Distq , which also validates our point that a higher
SNR brings faster inference time with early exit mechanism.

V. CONCLUSION

We propose a stage-wise adaptive inference approach with
early exit mechanism called EEM for fast and robust progres-
sive speech enhancement. Specifically, a threshold is empiri-
cally set beforehand. During the run time, the adjacent spectral
distance is calculated at each intermediate stage. Once it low-
ers the threshold, the procedure will terminate and output the
enhanced result with early exit. To improve the performance
of existing PL based systems, we propose PL-CRN++, which
incorporates stage recurrent mechanism and complex spectral
mapping strategy. The experiments on the TIMIT corpus
show that PL-CRN++ consistently surpasses state-of-the-art
baseline systems in multiple evaluation metrics. Moreover, by
suitably selecting the threshold, EEM can adaptively control
the inference speed of the model to perform more efficiently
in real scenarios.
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