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Abstract—In classification tasks, the classification accuracy
diminishes when the data is gathered in different domains.
To address this problem, in this paper, we investigate several
adversarial models for domain adaptation (DA) and their effect
on the acoustic scene classification task. The studied models
include several types of generative adversarial networks (GAN),
with different loss functions, and the so-called cycle GAN which
consists of two interconnected GAN models. The experiments
are performed on the DCASE20 challenge task 1A dataset, in
which we can leverage the paired examples of data recorded using
different devices, i.e., the source and target domain recordings.
The results of performed experiments indicate that the best
performing domain adaptation can be obtained using the cycle
GAN, which achieves as much as 66% relative improvement in
accuracy for the target domain device, while only 6% relative
decrease in accuracy on the source domain. In addition, by
utilizing the paired data examples, we are able to improve the
overall accuracy over the model trained using larger unpaired
data set, while decreasing the computational cost of the model
training.

Index Terms—domain adaptation, acoustic scene classification,
GAN, cycle GAN, paired data, loss functions

I. INTRODUCTION

Acoustic Scene Classification (ASC) is the task of assigning

a predefined label to an audio segment that best describes

its contents. The historical preview of previous research and

general framework for ASC can be found in [1], and an

overview of current methods based on deep learning can be

found in [2]. The ASC is one of the main tasks of the DCASE

challenge1, and reviews of the most recent competitions can

be found in [3], [4]. In this paper, we focus on the specific

problem of mismatched domains (also known as the domain

shift), where the mismatch is primarily caused by the usage

of different recording devices. The methods addressing this

problem are known as domain adaptation (DA). In this work,

we approach the domain adaptation problem via generative

adversarial networks (GAN) [5] and their extension Cycle-

GAN [6]. Previous use of GANs in the context of ASC

This research was supported by the National Science Centre under grant
number DEC-2017/25/B/ST7/01792.

1http://dcase.community/

include generation of new training examples [7] and extraction

of features using deep convolutional GAN (DCGAN) [8]. A

system with domain adaptation using GAN for the down-

steam ASC task was first used in [9]. This method has been

further improved using Wasserstein distance GAN (WGAN),

with the underlying theoretical framework presented in [10].

Other recent approaches of DA for the ASC task include

spectrum correction [11], band-wise statistics matching [12],

neural label embedding, relational teacher-student learning

[13], channel domain conversion [14], and feature projection

[15]. The theoretical foundations of domain adaptation can be

found in [16], and a general framework for adversarial domain

adaptation is presented in [17].

In this paper, we present several methods to perform ad-

versarial domain adaptation, as pre-processing to the acoustic

scene classification from the recordings of several different

devices. In particular, we focus on GAN and cycle GAN

models, with additional loss terms, including identity and

transfer loss terms. During the training of adversarial models,

we also take advantage of the availability of paired data, an

aspect of the data set that not many studies exploit (by trying

to solve a harder, but more common, task with unpaired data),

and compare it to solutions based on unpaired training. In our

experiments, we use the DCASE20 task 1A dataset, which

consists of 9 different devices and 10 acoustic sound scenes,

as opposed to 4 devices only used in previous DACSE18 and

DCASE19 challenges. To asses the efficacy of DA, we perform

experiments with an ASC classifier trained only on source

data. Our goal is to investigate and subsequently identify the

models which perform best in the DA task, rather than to

find a solution which achieves the most accurate classification.

A comparison with other approaches such as independent

classification in each domain or application of transfer learning

to the classifier will be subject to future research.

The paper is structured as follows. In Sec. II we present the

models with different loss functions for adversarial domain

adaptation. Sec. III presents the network architectures, data

sets, training procedure, metrics. Results and discussion are

presented in Sec. IV, followed by a summary in Sec. V.

http://arxiv.org/abs/2110.09598v1
http://dcase.community/


II. DOMAIN ADAPTATION WITH GENERATIVE

ADVERSARIAL NETWORKS

In this section, we describe training objectives used in

presented models for domain adaptation. Inspired by the use

of the CycleGAN [6] for domain adaptation in the context

of speaker recognition [18], [19], we propose to perform

device characteristic translation of audio recordings made with

different target devices to a single source device. We start with

a simple generator trained on paired data of both domains,

then we add a domain discriminator to form a GAN model,

and finally, use CycleGAN consisting of two interconnected

GAN models.

Lets us first justify the decision to transform the input

data to the source domain. Transforming source data to the

target domain may seem to be an attractive solution since it

is easier to degrade high quality audio of the source, rather

than to reconstruct it. However, in the considered problem,

the target domain contains several different devices, while the

source domain consist of a single device, which makes domain

adaptation to the source domain a well-defined transformation.

In contrast, because of the existence of multiple devices in the

target data set, the opposite transformation is ill-defined and

would result in a transformation to some (most likely) non-

existing device domain.

A. Generator model

The generator GT→S is trained to learn the mapping from the

target domain T to the source domain S. The training data XS

and XT consists of elements from two separate distributions

xS ∼ pS(x) and xT ∼ pT(x) and each xS has a corresponding

(paired) xT element. To obtain desired domain mapping the

generator is trained using ℓ1 loss between the paired examples

LT→S = ExT∼pT
[||GT→S(xT )− xS||1] . (1)

However, since during the test time, the domain of the tested

audio is unknown, the source audio should be invariant to the

transformation. This results in an additional loss component

LidT→S
= ExS∼pS

[||GT→S(xS)− xS||1], (2)

and thus the total loss function is defined as

Ltotal
G = LT→S + λid LidT→S

, (3)

where λid is the weighting coefficient for the identity loss.

B. GAN model

In GAN approach, beside the GT→S generator, there is also

a domain discriminator DS , which is trained to recognize

elements from domain S. We use the definition of GAN loss

function using the mean square error (MSE)

LGANT→S
=ExT∼pT

[DS(GT→S(xT ))
2] +

ExS∼pS
[(DS(xS)− 1)2] (4)

and similarly to the generator loss, additional components can

be added to the standard loss function. We propose to use the

general loss function of the GAN which is formulated as

Ltotal
GANT→S

= LGANT→S
+ λtr LT→S + λid LidT→S

, (5)

where λtr denotes the weighting coefficient for the transfor-

mation loss term. Similar loss (without LidT→S
component)

was used in [20].

C. CycleGAN model

Finally, the CycleGAN architecture consists of two inter-

connected GAN models. The first GAN is transforming the

target domain to the source domain, and the second GAN is

performing the opposite transformation. Note that although we

are interested only in a one-way mapping, CycleGAN learns

the mapping in both directions to allow regularization in the

form of cycle-consistency, which requires reconstruction of the

original features with minimum error. The cycle consistency

loss is defined as

LCyc =ExS∼pS
[||GT→S(GS→T (xS))− xS||1] +

ExT∼pT
[||GS→T (GT→S(xT ))− xT ||1] . (6)

Finally, we use the total loss for the proposed CycleGAN

which is defined as

Ltotal
CycGAN

=LGANS→T
+ LGANT→S

+ λcyc Lcyc

+λid (LidS→T
+ LidT→S

) , (7)

where λcyc denotes the weighting coefficient for the cycle

consistency loss term.

III. EXPERIMENTS AND EVALUATION

A. Network architectures for domain adaptation

The network architecture of the evaluated CycleGAN model

largely follows [18]. The generator network consists of the

downsampling and upsampling blocks. We choose the best per-

forming version with a skip connection that adds downsampler

input to the upsampler output, which allows to preserve the

input structure and forces the generator to learn the differences

between the source and the target domains. Our modification

to the architecture consists in removing the ReLU activation

function at the end of the residual block, which is in line

with the implementation of the original CycleGAN [6] and is

beneficial according to2. We also add a non-linear activation of

outputs tanh to the generator (similarly to the implementation

of [6]), and apply a sigmoid activation of outputs in the

discriminator, since we found in the preliminary experiments

that this makes the training more stable. Note that in this work,

the same generator architecture is used in all compared models

including GAN and the presented CycleGAN. As a result,

the generators of the trained models, which are later used in

pre-processing of the ASC task, differ only in the estimated

network parameters.

The implementation of all models is done with the Pytorch

Lightning framework [21].

2http://torch.ch/blog/2016/02/04/resnets.html

http://torch.ch/blog/2016/02/04/resnets.html


B. Data set and preprocessing

The data set used in the experimental evaluation is a

development set of the TAU Urban Acoustic Scenes 2020

Mobile data set [22]. The development set contains data from

10 European cities and 10 acoustic scenes: airport, shopping

mall, metro station, pedestrian street, public square, a street

with a medium level of traffic, traveling by tram, traveling

by bus, traveling by an underground metro, and urban park.

Recordings are made with 9 different devices, from which 3

are real devices (A, B, C) and 6 are simulated devices (S1-S6).

The total amount of audio in the development set amounts to

64 hours and it consists of 10-second long recordings. Most

of the recordings (40h duration) are made with device A,

which is the high-quality equipment recording at a sampling

rate of 48kHz and with a 24-bit resolution, to which we will

refer to as a source. Other recordings (24h duration) are made

using the devices of lower audio quality, i.e., a mobile phone,

a GoPro camera, and several simulated devices obtained by

using simulated impulse responses (IRs) and dynamic range

control, to which we will refer to as the target recordings.

For every recording of the target device, there is an over-

lapping (paired) recording with the source device, but there

are recordings of the source device without the corresponding

target device recording. For that reason, our paired data set

contains only 19h of audio recordings as opposed to 39h

in unpaired data set. To be able to provide reliable results

without an access to the DCASE evaluation data set, we extract

separate validation set from the test split. Importantly, the test

set contains two devices that are not present in the training

and validation part (S5 and S6). As advised in the challenge

description, recordings with the same location ID are allowed

only in one split (for that reason some recordings of the new

devices are excluded from the new test split). Finally, our

validation set consists of 7 devices and about 100 recordings

per device such that the test set consists of 9 devices with

around 230 recordings per device.

Regarding the input features to the evaluated networks, the

data is transformed to the short-time Fourier (STFT) domain,

then a log-Mel filter bank is applied to the power in the STFT

domain as in [23] except that we use a lower number of

frequency bands, which amounts to 40 (as in [18]). The final

feature map is computed by taking the logarithm of the power

spectogram and rescaling it to the values in the range [-1, 1].

C. Acoustic scene classification

To evaluate the impact of the proposed domain adaptation

on acoustic scene classification (ASC), we choose a ResNet-

based classifier which is described in [23], with the code

shared by the authors3. We choose the simpler version of

the classifier without any data augmentation techniques and

with a 40-band log-Mel filter bank along with delta and delta-

delta features scaled to the range [0, 1]. Nonetheless, note that

3https://github.com/MihawkHu/DCASE2020 task1

the applied system achieves better results than the provided

DCASE baseline classifier4.

D. Training and testing

Beside using the paired data, we performed also experi-

ments with training using all available training data (using

all recordings as unpaired data), in which we make sure that

both source and target recordings always represent the same

acoustic scene. The ASC classifier is trained for 200 epochs

with the configuration provided by the authors, except for

changing the input dimensions to match our generator’s output

and monitoring the classifier accuracy with our validation set.

The ASC classifier is trained using only the source data. All

of our generative models use training hyperparameters similar

to the ones used in [17] and [18]. The model input is built of

fragments of Mel-spectrograms consisting of 11 contiguous

frames processed in batches of size 32. Adam optimizer is

used with β1 = 0.5 and β2 = 0.999. The learning rate is

set to 0.002 with a linear decay after 15 epochs. Loss weight

λcyc is set to 10, λid set to 1 or 5 and λtr is set to 5 or 0.

When training generators in practice we use the mean rather

than the sum in (7), dividing the loss by two. The models are

trained for no more than 200 epochs and their performance

is measured every third epoch as an accuracy obtained by the

ASC classifier on the validation set after domain adaptation

using the trained model.

E. Evaluated systems

In performed experiments, in total we evaluate 6 models

for domain adaptation: (i) the generator with loss given by (3)

with λid = 1 denoted as Generator, (ii) identity preserving

GAN given by (5) with λid = 5 and λtr = 0, denoted as

GANid, (iii) GAN with identity and transfer loss functions

given by (5) with λid = 5 and λtr = 5, denoted as GANid,tr,

(iv) GAN trained using unpaired data with an identity loss

given by (5) with λid = 5 and λtr = 0, denoted as GANall
id , (v)

cycle GAN with the loss given by (7) with λid = 5 and λcyc =

10, denoted as CycleGAN, and finally (vi) cycle GAN trained

using unpaired data with λid = 5 and λcyc = 10, denoted as

CycleGANall. For comparison, we also evaluate the system

without domain adaptation, which is denoted as NA.

F. Evaluation measures

To evaluate the impact of applying the investigated DA

methods on acoustic scene classification, we measure ASC

accuracy using a classifier trained using only the source data.

During the final prediction all test examples are transformed to

the source domain using the studied DA systems. To be able to

directly measure how DA affects the data, we also measure the

Log-Spectral Distance (LSD) [24] between the paired source

and target domain examples (to be able to calculate those

distances, we used also the data from source domain that was

not included in the cross-validation split). Since we use the

scaled log-Mel-spectograms during the network training, for

4https://github.com/toni-heittola/dcase2020 task1 baseline

https://github.com/MihawkHu/DCASE2020_task1
https://github.com/toni-heittola/dcase2020_task1_baseline


TABLE I: Accuracy of the ASC classifier for different models

performing domain adaptation tested on the source domain

data, target domain data, and only on devices unseen during

the model training (denoted as new devices).

DA method

Accuracy [%]

(source)

Accuracy [%]

(target)

Accuracy [%]

(new devices)

NA 74.89 25.06 15.55

Generator 70.04 19.23 19.87

GANid 75.33 25.88 15.76
GANid,tr 63.00 40.19 28.51

GANall

id
75.33 25.39 16.84

CycleGAN 70.48 41.56 24.62

CycleGANall 70.04 39.87 27.00

TABLE II: Mean log-spectral distance (LSD) between the

source and target domain recordings tested on the source

domain data, target domain data, and only on devices unseen

during the model training (denoted as new devices).

DA method

LSD [dB]

(source)

LSD [dB]

(target)

LSD [dB]

(new devices)

NA 0.000 1.399 1.668

Generator 0.073 0.723 1.188

GANid 0.055 1.375 1.640
GANid,tr 0.120 0.766 1.216

GANall

id
0.054 1.387 1.650

CycleGAN 0.082 0.813 1.138

CycleGANall 0.081 0.790 1.062

consistency we apply the analogous scaling to the log-Mel-

spectograms when computing the LSDs, which as a result

reduces those values to the range from 0 to 10 dB.

IV. RESULTS AND DISCUSSION

Table I presents the results of ASC accuracy obtained on

test data transformed to the source domain using the proposed

systems. We analyze accuracy separately for the data from

the source device (A), all other devices (B,C, S1-S6), and

devices not presented in training and validation splits (S5

and S6). Note that there is eight times more target devices

than source devices in the test set (see section III-B). We

also calculate the mean log-spectral distance (LSD) for the

domain adapted data on the same 3 subsets of the test data

set, those results are presented in Table II. We can observe that

the separately trained generator is able to obtain the smallest

LSD value for target devices. However, this does not lead

to the overall best performance in terms of the classification

accuracy, which is the worst among all 6 compared DA

models, with an improvement observed only for new devices.

The GAN model provides a steady, small, yet very consistent

increase in acoustic scene classification accuracy across all 3

subsets of the test data. In particular, a large increase in the

accuracy for target devices is observed when the transfer loss

function is additionally incorporated into the GAN, however,

this comes at a cost of reducing the accuracy for the source

data. This improvement could be attributed to the discriminator

that enforces generated outputs to be similar to source domain

and prevents finding poor local minima of (3). The best overall

performance can be observed for the CycleGAN models,

0
0.5
1.0
2.0
4.0
8.2

16.4

kH
z

Source Generator GANid GANid, tr

0 2 4 6 8
Time [s]

0
0.5
1.0
2.0
4.0
8.2

16.4

kH
z

Target

0 2 4 6 8
Time [s]

GANall
id

0 2 4 6 8
Time [s]

CycleGAN

0 2 4 6 8
Time [s]

CycleGANall

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1: Normalized log-Mel-Spectograms of the source and

target recordings with and without the domain adaptation using

the investigated models for the example files park-paris-2424-

7265-a.wav and park-paris-2424-7265-s5.wav from the TAU

Urban Acoustic Scenes 2020 Mobile data set [22].

which achieve high accuracy for the target devices, while they

exhibit only a relatively small decrease in accuracy for the

source devices. As the most general, it takes advantages of

the aforementioned models and provides good generalization

to data from new, unseen devices. Finally, CycleGAN trained

using unpaired data is able to achieve high accuracy and low

LSD for new devices. Its performance on target devices is

close to GAN with transfer loss, but performs better for source

devices, probably thanks to having more data in the unpaired

data set. However, overall the better accuracy is obtained when

using CycleGAN trained with paired data. Note that using

paired data results in a smaller training data set, which also

allows for a faster training time. In order to provide additional

insights into the differences between the compared models for

domain adaption, we present normalized log-Mel-spectograms

before and after domain adaptation for an example audio

file. As can be seen from Fig. 1, DA using any of the two

CycleGANs clearly provides the best match with the source

domain, with the GAN with identity and transfer loss functions

and the pure generator also quite successfully performing

domain adaptation. The final result is shown in Fig. 2, in which

we present the 2D data visualization for two acoustic scenes

recorded using four different types of devices, before and after

domain adaptation using the best performing CycleGAN. As

can be observed, the data before DA is clearly clustered, with

clusters corresponding to the devices and sound scenes. After

domain adaptation, the clusters corresponding to the different



Before DA

After DA

airport device A
airport device B
airport device C
airport device S5

bus device A
bus device B
bus device C
bus device S5

Fig. 2: T-SNE [25] visualization of domain adaptation effects

on the airport and bus test data recorded using four types of

devices, i.e., source device A and target devices B, C, and S5.

The top plot shows the data before DA and the bottom plot

shows the data after domain adaptation using the Cycle GAN.

devices are not easily separable anymore, which indicates that

device-related domain adaptation is successfully performed.

V. CONCLUSIONS

In this paper, we analyze the impact of domain adaptation

using six presented models on the acoustic scene classification

task. In particular, we compare the domain adaptation achieved

by the simple generator, three types of the GAN model,

and a CycleGAN, paying special attention to the impact

of training these models using paired and unpaired data.

The results of performed experiments show that the highest

accuracy is obtained using the CycleGAN, trained also with

the paired data as provided in the TAU Urban Acoustic Scenes

2020 Mobile data set. The best-performing domain adaptation

system achieved 66% of relative improvement in accuracy for

the data recorded using the target devices, with 6% relative

decrease in accuracy on the data recorded using the source

device.
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