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Abstract—The influence of atmospheric turbulence on acquired
surveillance imagery poses significant challenges in image in-
terpretation and scene analysis. Conventional approaches for
target classification and tracking are less effective under such
conditions. While deep-learning-based object detection methods
have shown great success in normal conditions, they cannot be
directly applied to atmospheric turbulence sequences. In this
paper, we propose a novel framework that learns distorted
features to detect and classify object types in turbulent environ-
ments. Specifically, we utilise deformable convolutions to handle
spatial turbulent displacement. Features are extracted using a
feature pyramid network, and Faster R-CNN is employed as
the object detector. Experimental results on a synthetic VOC
dataset demonstrate that the proposed framework outperforms
the benchmark with a mean Average Precision (mAP) score
exceeding 30%. Additionally, subjective results on real data show
significant improvement in performance.

Index Terms—atmospheric turbulence, object detection, deep
learning, deformable convolution, object recognition

I. INTRODUCTION

Atmospheric turbulence consistently degrades visual quality
and has a negative impact on the performance of automated
target recognition and tracking in a scene. These distortions oc-
cur when there is a temperature difference between the ground
and the air, causing rapid upward movement of air layers and
resulting in changes to the interference pattern of light refrac-
tion. This leads to visible ripples and waves in both spatial
and temporal directions in images and videos. Mitigating this
effect is an ill-posed problem with non-stationary distortions
varying across time and space, and a degree of distortions is
unknown. The restoration process is thus complex and time-
consuming. Objects behind the distorting layers are almost
impossible to recognise by machines leading to a failure
of automatic detection and tracking processes. Examples of
applications directly affected with atmospheric turbulence are
video surveillance, security and defence.

Object detection methods on natural and clean images have
been greatly developed achieving high performance in term of
both detection accuracy and computational speed. The state of
the arts are based on deep learning with convolutional neural
networks (CNN) (see recent techniques for object detection
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in [1]). However, the performance of these methods declines
when the features are corrupted by noise or distorted by blur.
This degradation is even more pronounced in the case of at-
mospheric turbulence, where distortions appear randomly and
are spatially and temporally invariant [2]. Up to now, only face
recognition in atmospheric turbulence has been developed [3].
They have also proved that training deblurring and detection
models together gives better results than separating the models.

In this paper, we tackle the multi-class object detection
in atmospheric turbulence scenes without image restoration
process. Our framework is hence fast and straightforward. The
method is developed based on the Faster R-CNN detector [4],
but this should not be limited to. The features are extracted
with a feature pyramid network (FPN) [5], which can deal
with different resolutions, different sizes of the objects, and
different amounts of distortions. To mitigate the effects of at-
mospheric turbulence, we incorporate deformable convolutions
[6], which help reduce the impact of visible ripples along ob-
ject edges caused by atmospheric turbulence. A key contribu-
tion is that, as in the atmospheric turbulent environments, the
objects exhibit visual distortions within small ranges of pixel
displacement appearing randomly at all directions. The use
of deformable convolutions provides flexibility in capturing
the shapes of the objects and assists the FPN in extracting
the appropriate features from the distorted objects. As there
is no ground truth available for this problem, we trained the
model using a synthetic dataset and evaluated its performance
using both synthetic and real datasets. Our code is available
at https://github.com/disen-hu/FasterRcnn FPN DCN.

II. RELATED WORK

Image restoration techniques for atmospheric turbulence
have been extensively studied [7]–[9], with some methods
specifically addressing moving objects in distorted scenes [2],
[10]–[12]. Deep learning technologies have also gained atten-
tion in atmospheric turbulence mitigation, although they are
still in the early stages of development. Existing architectures
have been employed and retrained using synthetic datasets in
various methods [13]–[15]. Additionally, the use of Complex-
Valued CNN was explored in [16], demonstrating significant
improvements over traditional CNN-based approaches.
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For object detection in atmospheric turbulence scenes, most
traditional methods were proposed to detect long-distance
target objects. The main limitation of these is that those objects
are at sufficiently low fidelity to exhibit little or no detail,
instead appearing as blurred silhouettes or blobs [2], [17]–
[20]. To the best of our knowledge, the deep learning-based
object detection has been applied for only face recognition
[3]. This method is based on Generative Adversarial Networks
(GAN). However, the features on human faces are very clear
and distinguish from surroundings. This method is therefore
not suitable for complicated scenes with many types of objects.
For general object recognition, there is not any deep learning
methods specifically proposed for that in atmospheric turbulent
environment. Authors in [21] has tested three state-of-the-art
object detection methods, retrained with the synthetic thermal
imagery. They reported that among VfNet [22], YOLOR [23],
and TOOD [24], YOLOR gave the best performance in both
mean average precision and speed.

III. METHODOLOGY

A. Dealing with atmospheric turbulent distortion
A turbulent medium causes phase fluctuations, which ex-

hibit in the image as a phase shift and its amount depends
approximately linearly on spatial displacement [25]. Following
quasi-periodic property, the phase of each pixel is altered
randomly, whilst the magnitude of high frequency is generally
decreased due to mixing of the signals leading to a blur.
This causes images look like ripples across time – the pixels
spatially shift from their actual locations in random directions.
In term of image degradation model, the distorted image Iatmos
is described as Iatmos = h∗Iideal+n, where n is noise, and h is
an unknown spatially variant point spread function, comprising
geometric distortion and blur.

The clean or ideal image Iideal is altered by h more than
n significantly. That is, there are two aspects of atmospheric
turbulence to concern: i) ripple effect (geometric distortion and
blur) and ii) unknown amount of this effect locally. In this
paper, We exploit deformable convolutions to deal with the
ripple effect. Mathematically, the deformable convolution can
be expressed as Eq. 1. Following [6], the output feature map
y at pixel p is the result of convolution between a learnable
weight w(pn), where pn are elements of regular grid R. The
irregular positions of an input feature map x are a combination
of the regular grid R and the offsets ∆pn.

y(p) =
∑
pn∈R

w(pn) · x(p+ pn +∆pn) (1)

This can be interpreted that the deformable convolutions allow
the pixels associated to the current kernel to spatially locate
outside the regular grid search. So the same object in the
different images, affected by different turbulent distortions,
could then have the same features, as shown in Fig. 1. This
fully benefits in object recognition as gaining more accurate
features.

To deal with unknown amount of distortions, we exploit
multiple scales of features so that they cover all possible ranges

frame1                            frame2                            frame3

Fig. 1. Visualisation of the effect of 3×3 deformable convolutions on
turbulence distortion. The red dots correspond to the same feature.
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Fig. 2. A diagram of the proposed object detection in atmospheric turbulence
scenes.

of displacement duo to pixels in Iatmos shifted from those in
Iideal.

B. Network architectures

The proposed framework adapted from Faster R-CNN [4] is
shown in Fig. 2, comprising three modules: i) feature extrac-
tion, ii) region proposal network (RPN) and iii) classification
network.

For the feature extraction, we replace the single-scale fea-
ture extractor originally used in the Faster R-CNN with a
feature pyramid network (FPN) [5]. FPN offers multi-scale
features which benefit i) different sizes of targeting objects,
ii) deal with different amount of atmospheric turbulence, and
iii) improve classification accuracy. We initial the FPN with
pretrained model on COCO segmentation dataset [26]. We
tested two backbone architectures, VGG16 [27] and ResNet50
[28], and found the ResNet50-based model outperforms the
VGG16-based model more than double in term of mAP.
Therefore, we employ ResNet50. We then replace regular
grid convolutions with deformable convolutions following the
reasons stated in Section III-A.

RPN generates bounding box proposals in different sizes
using shallow architecture (3×3 Conv + ReLU + 1×1 Conv).
The region proposals are sent to the RoI Pooling layer together
with feature maps for classification. We employ pretrained
ResNet50 model from the official PyTorch, which has achieved
81% accuracy on VOC datasets. Using a pretrained model
can reduce training duration and achieve better results. Similar



to the feature extractor, we apply deformable convolutions in
RPN and in the ResNet blocks. At the end, the feature vectors
are passed to two parallel fully connected layers. One branch
uses Softmax function to calculate the probability of being
each category, and the other branch outputs the coordinate
offset of the proposal box and uses the frame regression to
correct the coordinate. Non-maximum Suppression (NMS) is
employed to eliminate the redundant boxes.

C. Training procedure

Since the Faster R-CNN combines both classification and
bounding box regression, the loss function L of the proposed
framework consists of two parts: RPN loss and regression loss
of Faster R-CNN as shown in the first and the second parts
of Eq. 2, respectively.

L = − 1

Nf

∑Nf

i=1
log[p∗i pi + (1− p∗i )(1− pi)]

+ α
1

Nr

∑Nr

i=1
p∗i smoothL1

(ti − t∗i ),

(2)

where pi represents a probability that anchor forecast is the
object i, p∗ is equal 0 or 1 when ground truth is negative
or positive, respectively. ti represents the prediction in RPN
training stage, of which the ground truth is t∗. The smooth L1
loss is defined as Eq. 3, where σ is empirically set to 3.

smoothL1
(x) =

{
0.5x2 1

σ2 , if |x| < 1
σ2

|x| − 0.5, otherwise
(3)

We employ Adam optimizer with an initial learning rate of
0.0001. Three ratios of RPN anchor are used, i.e. 0.5 , 1 and 2.
The IoU thresholds of RPN and RCNN for positive detection
are set to 0.7 and 0.5, respectively.

IV. RESULTS AND DISCUSSION

Our framework was trained with synthetic dataset, generated
following the procedure in [13], where nine point spread
functions of atmospheric turbulence were locally applied with
random size and strength. We used VOC dataset [29], contain-
ing 20 classes1 labelled as bounding boxes. There are 16,551
images for training and 4,952 images for testing, with total
52,090 annotated objects. The results of this synthetic testing
dataset were presented in Section IV-A, and the inference of
training with this synthetic training dataset was then used to
detect objects in the real dataset, as shown in Section IV-B.

A. Synthetic datasets

We compared our methods with state-of-the-are object de-
tection, YOLOv4 [30]. YOLOv4 employs Path Aggregation
Network (PAN) which is the same concept of FPN, so we only
implemented deformable convolutions on YOLOv4 framework
(YOLOv4+DC). The results are shown in Table I, and our
proposed method (Faster R-CNN+FPN+DC) achieves the best

1VOC dataset inclues person, bird, cat, cow, dog, horse, sheep, aeroplane,
bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant,
sofa, tv/monitor

TABLE I
DETECTION RESULTS ON THE SYNTHETIC DATASETS WITH MEAN

AVERAGE PRECISION (MAP), MEAN AVERAGE RECALL (MAR) AND
F1-SCORE

Method mAP mAR f1-score
YOLOv4 0.598 0.610 0.562
YOLOv4 + DC 0.654 0.672 0.609
Faster R-CNN 0.563 0.576 0.542
Faster R-CNN + FPN 0.630 0.650 0.583
Faster R-CNN + FPN + DC 0.779 0.773 0.703

Fig. 3. An improvement of mAP in each category when FPN and deformable
convolutions (DC) are employed.

performance in all three metrics used. Both Faster R-CNN
and YOLOv4 are very successful in common object detection
datasets. However, for the object detection problem with
atmospheric turbulence effect, the background is blurred, and
objects are distorted due to atmospheric turbulence, which
makes them insufficient to solve this problem.

We examined the influence of FPN and deformable con-
volutions. Fig. 3 reveals a significant improvement on the
detection performance. The highest precision was achieved
when detecting horses. Detecting the bottles is the most
improvement – FPN alone improved mAP by 55%, and FPN
and DC together improved as high as 145%. The most missed
objects contain thin structures, e.g. bottles, chair, and boat, as
these parts could be distorted, blurred and their features are
mixed with the background. The subjective results in Fig. 4
show examples of i) easy case, where all models can detect
the house and the person correctly; ii) medium case, where
only the proposed method achieves accurate results, whilst
others can only detect the right bird correctly; iii) the hard
case, where all models can detect the person but most models
missed out the bottles.

B. Real datasets

We explored the performance of our proposed model on
real atmospheric turbulence datasets, detailed in [16]. The
objective assessment was however not applicable to the real
distortion datasets due to the absence of ground truth. Fig. 6
shows that our method correctly detected the aeroplane and the
car with the probabilities of 0.89 and 1.0, respectively. Fig. 7
shows the frame-by-frame detection of a ‘Van’ sequence. The
vans in the top row and the bottom-left frames were detected
as a car, but the bottom-right frame shows the incorrect
detection. Notably, despite being trained on synthetic datasets,
as described above, the model detected a white building,



Fig. 4. Subjective results of different models and ground truth. The top to bottom rows show the easy, medium and difficult cases, respectively.

Fig. 5. Subjective results of 1100×440 ‘Truck’ sequence. (Left-Right) The incorrect detection, correct detected, mixed results, respectively.

Fig. 6. Detection results of 640×360 ‘Airport’ and ‘Car’ sequences.

visually similar to a part of the van, as a car. Fig. 5 presents a
challenging sequence example. A group of objects, including
a container, several rectangular sign posts, in many frames was
consistently detected as a car as shown in Fig. 5 left. However,
the probabilities were not high (<0.5). Fig. 5 right shows that
the van was detected as a car and also a train with probabilities
of 0.74 and 0.33, respectively. The incorrect detection may be
attributed to the lack of color information in this sequence and
the strong distortion effect.

V. CONCLUSIONS

This paper presents a novel framework for object recogni-
tion in the atmospheric turbulence environment, where image
quality is severely degraded due to random signal interfer-
ence. The framework is based on Faster R-CNN and utilizes
deformable convolutions to handle spatial displacement caused
by turbulence. The feature extraction is performed in a pyra-

Fig. 7. Detection results of 480×384 ‘Van’ sequence.

mid manner, considering different object sizes and levels of
distortion. Experimental results demonstrate that the proposed
method outperforms state-of-the-art object detection methods
significantly.
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