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ABSTRACT 

Liver CT scan image analysis plays an important role in 

clinical diagnosis and treatment. Accurate segmentation of 

liver tumor from CT images is the prerequisite for targeted 

therapy and liver resection. Existing semi-automatic 

segmentation based on graph cuts or fully automatic 

segmentation methods based on deep learning have reached 

the level close to that of radiologists. To improve tumor 

segmentation on liver CT images, we propose a simple post-

processing scheme to optimize tumor boundaries. This 

method improves boundary prediction performance by 

optimizing a sequence of patches extracted along the initial 

predicted boundary. The proposed boundary refinement 

segmentation network obtains strong semantic information 

and precise location information through the information 

interaction between different branches, to achieve precise 

segmentation. The Liver Tumor Segmentation (LiTS) 

dataset is used to evaluate the relative segmentation 

performance obtaining an average dice score of 0.805 using 

the new method. 

Index Terms— CT data, Liver tumour, Boundary 

Refinement , High resolution segmentation 

1. INTRODUCTION

The liver cancer is the third most deadly malignant tumor in 

the world. Globally around 905,7000 people were diagnosed 

with liver cancer in 2020, and around 830,200 patients have 

already died from the disease [3]. Medical imaging 

examination has become an important examination method 

and diagnostic basis in the diagnosis of liver diseases. 

Computed tomography (CT)-based medical images can 

provide rich information including the location, structure 

and function of organs and lesions with a relative lower 

price. In clinical diagnosis, CT image segmentation of liver 

tumor is highly relevant for the diagnosis and treatment of 

liver cancer, such as preoperative preparation for tumor 

resection and subsequent radiation therapy. However, liver 

tumor segmentation is still a challenging task due to variable 

shape, diverse pathologies, and proximity to other vital 

organs. In clinical application, liver tumor segmentation of 

CT scans is usually accomplished by expertise radiologist, 

and it is a time-consuming work, with the average scans 

taking 90 minutes to complete per patient. In addition, it is a 

highly subjective job rely on vision and work experience, 

even some experts have difficulty in giving the same 

segmentation results for one CT image. 

Conventional image segmentation including region 

growing, have  achieved some results but still require 

additional human intervention such as feature selection and 

initial point determination. Recently, Deep Learning has 

become the main research direction of computer vision 

problems. Mature models successfully applied to a range of 

image processing challenges include Convolutional neural 

network, Recurrent neural network, Generative adversarial 

network, and Transformer model have achieved 

Specifically the U-Net is a popular semantic segmentation 

network based on fully convolutional neural network that is 

widely used in biomedical image segmentation applications. 

Recently researchers used different methods to achieve 

liver tumour segmentation from CT scans. The modified U-

Net proposed by Hyunseok et al.[7] adds a residual path 

with deconvolution and activation structure in the skip path 

to reduce the repetition of low-resolution information. It 

also  uses an extra convolution operation in skip connection 

to get achieve better feature extraction. Xiaomeng et al.[6] 

proposed a hybrid densely connected U-Net, which merged 

a 2D Dense U-Net and a 3D counterpart that efficiently 

extracts intra-slice and inter-slice features. Alyaa et al.[11] 

proposed cascaded U-Net to determine the region of interest 

firstly according to the liver segmentation prediction 

through the first U-Net, the tumour segmentation results are 

obtained with a smaller size input with the second U-Net. 

Ying et al.[12] use more spatial features in coronal slices to 

improve the performance of liver segmentation.  In addition, 

they also designed a new deep residual module and attention 

module to fuse feature channels and spatial correlation. 

These approaches have achieved significant results in 

liver tumor segmentation. Subsequent optimization on the 

segmentation results can improve the accuracy. Christ et 

al.[13] used a 3D conditional random field (CRF) to refine 

the segmentation results from a cascaded-fully CNN model. 

Fang et al. [14] used graph cut and previously learned 

probability maps from 3D CNN to perform accuracy 

improvements on the initial segmentation. However, these 

optimization schemes need to optimize each scan 

individually, which takes a lot of time. 
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This paper proposes an optimized algorithm for CT 

tumor segmentation that is based on human behavior and 

experience in segmentation. It aims to improve the global 

segmentation result by optimizing a series of boundary 

patches obtained from a coarse segmentation result. In 

addition, a new optimized network that integrates 

information from multiple resolutions is proposed. 

The rest of this paper is organized as follows. Section 2 

introduces the tumour segmentation refinement framework 

including boundary patch extraction and a modified 

segmentation network. Section 3 shows the performance of 

this method on public LiTS data sets. Concluding remarks 

are provided in Section 4.  

2. METHOD

2.1. Proposed Optimization Workflow 

The  proposed segmentation  optimization workflow shown 

in Figure 1, consists of four major steps. The first step is to 

obtain all coarse segmentation results for all images in 

training  set. The second step is to extract all image patches 

and mask patches according to the course prediction result 

for training neural networks. The third step is an optimized 

high resolution segmentation network for boundary patch 

segmentation. The final step is to restore optimized 

boundary to the corresponding position of the image. 

2.2. Boundary Patch Extraction 

Humans’ complete  segmentation tasks, by first finding the 

target area and then carefully depicting the boundary. 

Segmentation results provide location information to 

determine the distribution of target regions. Then obtain 

boundary patches are obtained on these target areas for 

subsequent optimization. Initially  all images are used in the 

training data set through a prediction network such as 

cascaded U-Nets[8] to obtain a coarse segmentation result. 

This segmentation can yield result is expected to  have a 

typical average dice value greater than 0.6 for obtaining 

boundary patches. In this coarse prediction results, some 

images cannot detect the presence of tumour because the 

size of tumor is too small, so we manually marked the 

predicted value of this part of the image with a 5×5 pixel 

block in order to ensure the richness of the training set. 

Consequently, the dataset has been expanded from a pair of 

image and ground truth set, to an image set, a ground truth 

set, and a coarse segmentation set as in Figure1(a) and (b). 

All images in the coarse segmentation prediction set as 

shown in Figure1 (d)  are processed as binary images, since 

all boundary values can be easily obtained. Based on the 

coarse segmented prediction, several boundary patches are 

extracted by sliding along the tumor border with each tumor 

border pixel as the centre point. At the same time, the 

boundary patches on the corresponding image and ground 

truth are acquired at the same position, which are indicated 

in Figure(c) and (e). The size of patches is designed as 1/8 

of the original image. However, this will inevitably lead to a 

large amount of information redundancy, accompanied by a 

large amount of computational cost. We design the sliding 

strides to be 2/3 of the patch’s length to avoid this problem. 

So far, three expanded datasets containing rich boundary 

information have been produced and used for the subsequent 

refinement stage. 

2.3. Boundary Refinement Segmentation 

In this paper, we employ a multi-level information fusion 

network for accurate segmentation. As illustrated in Figure 

2, this is a two-input single output segmentation network; 

the concatenation of original image and coarse segmentation 

image is fed into the network. The purpose of concatenating 

of the input image and the coarse segmentation result is to 

attach a strong constraint to the input image to make the 

network pay more attention to the information near the 

boundary. it can accelerate the convergence rate and 

converge in the right direction. 

Figure 1 Our proposed optimization workflow, (a)  liver 

CT image and corresponding ground truth, (b) extracted 

coarse segmentation (c) the image and (d) mask 

boundary patches  from the coarse segmentation (e)mask 

boundary patches from the ground truth(f)  all patches 

pass the boundary refinement network (g) final 

segmentation result. 
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The network shown in Figure 1(f) and in more detail in 

Figure 2 comprises a feature extraction module, several 

down-sampling, up-sampling, and concatenation. As shown 

in the red dotted box in Figure2, the basic feature extraction 

is processed with four times 3×3 convolution with batch 

normalization and ReLU activation function. The size of 

convolution kernels increases from 64 to 512 in a double 

increment with the number of down-sampling. Due to the 

size of input images has been decreased a lot compared with 

original images, a convolution operation with a stride of 2 is 

used to accomplish the down-sampling rather than pooling. 

Although it will inevitably increase some computation cost, 

more information can be retained in the case of less input 

information. 

Each feature extraction block is passed with residual 

structure to avoid gradient vanishing caused by the increase 

of network depth. We set 7,5,3,1 feature extraction block in 

four different resolutions respectively. As the number of 

down sampling increases, more abstract features and 

information are extracted with a smaller feature size as 

shown in Figure2. Fully fusing information in different layer 

enables the model to learn more complex patterns and better 

capture the correlation of data. When the features received 

by each basic feature extractor come from different 

dimensions, the information is fused together through a 

cascade operation as shown in the purple bar in Figure 2 to 

extract new features. The previous feature map is adjusted to 

an appropriate size using a 1×1 convolution, down sampling 

(convolution with a stride size of 2) or up sampling (bilinear 

interpolation) to satisfy the concatenation requirements. 

More fine-grained information is obtained in low 

resolution by using multiple feature extractors which is used 

in multi-level information fusion. The fine-grained 

information in the shallow layer reduces the resolution by 

down sampling, while abstracted information in deep layer 

expands the feature size by interpolation. Features in 

different dimensions are fused together by concatenation for 

information interaction to obtain richer semantic 

information and precise location information. 

2.4. Reassemble Process 

The image patches and corresponding mask patches are 

simultaneously fed into a trained optimized segmentation 

Figure 2 The architecture of proposed boundary refinement segmentation network. 

Figure 3 Overlapping refined patches. 
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network to obtain accurate patch segmentation results as 

illustrated in Figure3 that shows 7 overlapping patches. The 

segmentation results of these patches are binarized into 0 

and 1 and need to be restored to the original position 

according to the position of the boundary pixels. The 

original prediction is directly replaced with the refined 

boundary patch and form a new prediction map. For those 

overlapping pixels, where the sum of their pixel values is 

greater than or equal to 1 is considered to be a tumor pixel.  

3. EXPERIMENTS AND DISSCUSSION

The data set used for training and testing is the Liver 

Tumour Segmentation Challenge (LiTS), which comes from 

clinical sites around the world[15]. The data set contains CT 

scans of 130 patients. All scans have been provided in nii 

format with an axial size of 512*512. For each patient data 

includes,  hundreds of cross-sectional scans of the 

abdominal cavity and annotated images provided by 

professional radiologists. We select all CT scan images 

containing tumors, for a total of 70 patients for training and 

testing. The training set and test set contained 50 patients 

and 20 patients, respectively. The training set of patches 

contains 30183 patches to train the refinement segmentation 

network. The size of patch is set to 64×64, which reduce the 

amount of calculation cost while retaining sufficient 

information around the tumor area. This work is 

implemented using Keras based on the TensorFlow backend. 

The proposed boundary refinement network is trained for 

300 epochs using Adam optimizer with learning rate 1e-4 to 

1e-5. 

To evaluate our tumor segmentation results, we 

measure the network’s performance in terms of five indexes, 

dice sore, volume overlap error (VOE), relative volume 

difference (RVD), average symmetric surface distance 

(ASSD) and the maximum symmetric surface distance 

(MSD). Table 1 shows the results of eight different 

segmentation methods on LiTS datasets. As seen in Table 1, 

a 0.325 VOE and 0.841 ASSD is obtained based on our 

method, which is the highest score among all segmentation 

methods. We also get a relatively high score on global dice 

score as the most important evaluation metric. 

Figure 3 shows some visualizations of tumor 

segmentation for four patients. The green line represents the 

optimized tumor boundary, the yellow line represents the 

coarsely segmented tumor boundary, and the red line 

represents the ground truth boundary. It is seen  that our 

method performs well in optimization for large, medium, 

and small tumors. The optimization algorithm can 

TABLE I. COMPARISON OF OUR MODEL WITH OTHER EIGHT TUMOUR SEGMENTATION METHOS BASEDON SIX MEASURE 

METRICS. THE SYMBOL”\” REPRESENTS UNREPORTED RESULT. BOLD FONT REPRESENTS THE HIGHERST SCORE ON 

EACH MEASUREMENT. 

Model Tumor 

Global dice Dice per case VOE(%) RVD(%) ASSD(mm) MSD(mm) 

Shape-parameter[1] \ 0.754 0.709 0.124 1.6 \ 

U-Net+Level set[2] 0.700 \ \ \ \ \ 

AHCnet[4] 0.591 0.574 1.507 0.329 1.462 7.538 

2D-dense[5] \ 0.725 0.589 \ \ \ 

H-dense U-net[6] 0.824 0.722 \ \ \ \ 

CU-Net[8] \ 0.595 0.460 \ \ \ 

MCG-FRN[9] 0.764 0.674 0.324 0.194 4.408 7.113 

Hybrid attention[10] 0.798 0.762 0.395 0.327 0.887 7.302 

Our model 0.805 \ 0.325 0.191 0.841 7.359 

Figure 2 Visualization results of four different patients. 

Red line presents the ground truth of tumor boundary, 

yellow line present segmentation results need to be 

refined, green line presents refined segmentation 

boundary. 
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effectively shrink or expand the rough segmentation results 

to approach the real results. Figure 4 shows the effect of the 

mask patch on the optimization algorithm. Column (a) are 

initial CT images, column (b) are segmentation results 

without mask patch, column (c) are segmentation results 

with mask patch. Red, yellow, and green line present ground 

truth, coarse segmentation, and refined segmentation 

boundary respectively. When the model remains unchanged, 

the prediction results without the participation of the mask 

patch become very unreliable. For some small tumors, the 

model cannot obtain accurate prediction results or even 

completely wrong predictions, which are not as good as the 

results before optimization. The existence of the mask patch 

allows the network to focus more on the pixels near the area 

to be optimized, so that the optimization result is closer to 

the real value which can be clearly seen from Figure 4. 

4. CONCLUSION

In this paper, we presented a new method to optimize liver 

tumors segmentation results from CT scans, which can 

achieve end-to-end refinement for liver tumor segmentation. 

We extract the image patches and mask patches according to 

the coarse segmentation results. We also designed a 

specialized boundary refinement network for patch size 

images segmentation. Use mask patch to strengthen the 

network's attention to the boundary area to improve 

segmentation performance. Compared to traditional U-shape 

deep neural networks, our proposed network uses more 

feature extraction block to replace the skip connection to 

obtain more information in the case of limited input 

information. We obtained an average dice score of 0.805 

and volume overlap error of 0.325 on the liver tumour 

segmentation challenge. Due to the reduced input image size, 

the problem of class imbalance is improved. 
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