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Abstract—Automated Audio Captioning is a multimodal task
that aims to convert audio content into natural language.
The assessment of audio captioning systems is typically based
on quantitative metrics applied to text data. Previous studies
have employed metrics derived from machine translation and
image captioning to evaluate the quality of generated audio
captions. Drawing inspiration from auditory cognitive neu-
roscience research, we introduce a novel metric approach –
Audio Captioning Evaluation on Semantics of Sound (ACES).
ACES takes into account how human listeners parse semantic
information from sounds, providing a novel and comprehensive
evaluation perspective for automated audio captioning systems.
ACES combines semantic similarities and semantic entity la-
beling. ACES outperforms similar automated audio captioning
metrics on the Clotho-Eval FENSE benchmark in two evaluation
categories.

Index Terms—automated audio captioning, evaluation metric,
sound semantics

I. INTRODUCTION

Automated audio captioning (AAC) is an emerging field

of audio processing. As introduced in 2017 by Drossos

et al. [1], the goal of AAC is to describe the content of an

audio clip using natural language, that is, using structured

text that describes sound. The performance of AAC models

is estimated using metrics that compare model-predicted

captions with human annotations.

Standard AAC models are based on the encoder-decoder

architecture [2], where the encoder converts the input

audio to an embedding, which is then fed to the decoder.

In this architecture, the decoder learns to generate the

audio caption by minimizing the cross-entropy loss on the

probabilities of the decoder outputs. During inference, the

decoder calculates the most probable sentence given the

embedded audio.

AAC models are benchmarked using metrics tailored to

various criteria (see Section II-A, below). Additionally, it is

possible to benchmark the metrics themselves, and gauge

their alignment with human judgment. In this context,

Zhou et al. [3] introduced the FENSE benchmark, which

evaluates how AAC metrics perform in comparison to hu-

man evaluation.

Research in the field of auditory cognition and neuro-

science has shown that humans listen to sounds to derive

information on sources, events, and changes in the envi-

ronment and that this information is reflected in listeners’

verbal descriptions of everyday sounds [4]. When asked to

describe sounds, listeners refer to the presence of animate

(who) or inanimate (what) sources, identify mechanisms

or actions of sound generation (how) and, eventually, to

a spatial (where) or temporal (when) context (see Table II,

and [4], for the derivation of these classes of descriptors

from previously published taxonomies of natural sounds).

In this paper, we propose a novel metric to evaluate

audio captioning algorithms on annotated datasets: Audio

Captioning Evaluation on Semantics of Sounds” (ACES)1.

ACES draws inspiration from auditory cognition research on

the extraction of sound descriptors: words or phrases that

describe meanings such as what makes the sound, what is

the location and how the sound is produced (see Table II

for a list of all categories). This is related to semantic role

labeling, which is the process of assigning labels to words

to indicate its semantic role [5]. ACES utilises the cosine

similarity of vector representations of these sound descrip-

tors to measure the correspondence between generated and

“ground truth” captions. ACES returns a score that indicates

the quality of the generated caption based on these ground

truths.

In short, the ACES score consists of a cosine similarity of

the pairwise token combination. ACES uses precision and

recall from this cosine similarity, and takes the token with

the highest score as overlap. ACES also utilises a METEOR

based approach in weighing of precision and recall, a small

penalty for longer captions, and a fluency error detection

model. This work is an extension of an earlier version of

ACES, presented at European Signal Processing Conference

2023 (EUSIPCO) [6]. The current version of ACES super-

sedes the initial release, rendering the previous version

obsolete and deprecated.

II. RELATED WORK

The evaluation metrics from the Microsoft COCO Caption

Dataset represent a tool-set of audio captioning evaluation

algorithms [7]. This set of evaluation metrics was originally

1Code, data and models available at: https://github.com/GlJS/ACES.

http://arxiv.org/abs/2403.18572v1
https://github.com/GlJS/ACES


TABLE I
OVERVIEW OF METRICS USED FOR EVALUATING AUTOMATED AUDIO

CAPTIONING MODELS

Metric Description Primary use

BLEU1..4
Uses the co-occurrences of n-grams.
Adds a brevity penalty.

Machine translation

METEOR

Harmonic mean of precision and
recall of caption chunks. Recall
weighted 9 times more than
precision. Matches also stems,
synonyms and paraphrases

Machine translation

ROUGE

Calculates F-measure using,
longest common subsequence.
Oriented to recall with β= 1.2.

Text summarization

SPICE
Matches captions on object classes,
relation types and attributes.

Image captioning

CIDER

Calculates a weighted sum of the
cosine similarity for n-grams
with n ∈ [1,4]. Uses TF-IDF.

Image captioning

BertScore

Calculate F1, precision and recall
of matched words from the
pairwise cosine similarity
of the sentence embeddings.

Text generation

BLEURT
BERT model trained on human
annotated dataset of sentence pairs,

Text generation

FENSE

Cosine similarity of sentence
embeddings combined with
a fluency detection model

Audio captioning

SPICE+
Combines SPICE with matching
using sentence embeddings

Audio captioning

intended to measure performance in image captioning

tasks, but has since been adopted in other domains, in-

cluding audio captioning. The tool-set includes the metrics

BLEU [8], ROUGE [9], METEOR [10] and CIDEr [11], and,

in later COCO versions, SPICE [12]. The current standard

in AAC metrics are SPIDEr and its derivative SPIDEr-FL.

SPIDEr is a combination of CIDER and SPICE, which

outperforms both metrics based on human evaluation of

a randomly sampled COCO test set (10.56% increase com-

pared to a baseline MLE model) [13]. SPIDEr-FL is SPIDEr

enhanced with an additional pretrained fluency detection

model, specifically designed to identify incomplete sen-

tences and sentences with repeated or missing words [3].

For an overview of recent metrics for evaluating Automated

Audio Captioning models, see Table I.

A. Drawbacks of current metrics

The performance metrics currently adopted in the field

of AAC are characterized by several drawbacks. For ex-

ample, the BLEU, ROUGE, CIDEr and METEOR metrics

are sensitive to n-gram overlap, which is neither necessary

nor sufficient for establishing meaning similarity between

sentences [12]. For example, the captions “Rain coming

from a big cloud”, and “Music coming from a big band”,

are dissimilar in meaning but have a 4-gram in common,

resulting in a high n-gram score. Although SPICE was pro-

posed to mitigate this problem, it makes the overly stringent

assumption that the compared captions have exactly the

same wording for its entities, attributes, and relations. For

example, the candidate sentence “Young woman talking

with crunching noise” and the reference sentence “Paper

crackling with female speaking lightly in the background.”

result in a SPICE score of 0, despite their clear affinity in

meaning [3]. In other cases, the caption may not include

text descriptors of the sound-generating agents or objects

(e.g. “Metallic scraping that stops and then starts again”) or

descriptors of actions (e.g. “Very loud static sound without

any other noise”). In such cases, a scene graph (a way

of encoding objects, attributes and relations) cannot be

composed or calculated, and the SPICE score returns a low

value regardless of semantic relatedness.

Here, a novel metric is proposed based on semantic role

structure (e.g. who did what to whom). Semantic-role was

previously considered by Lo et al. [14], who proposed the

MEANT metric in the context of Machine Translation. A

drawback of this metric is the use of syntactic parsing

of the sentence, which results in a low score when syn-

onyms are used. Pretrained models such as BLEURT [15]

and BERTScore [16] have also been used as a metric for

various machine learning tasks. One of the benefits of these

models is that you can extract a contextualized embedding

that captures the meaning of the term, and that similar

meanings are correlated with the computational similarity

derived from a cosine of the two embeddings.

The comparison of sentences based on lexical structure

has been investigated in recent studies on Automated Audio

Captioning. The FENSE metric [3] uses a language model to

calculate similarity and includes a fluency penalty model to

capture coherent structures in audio captions. Specifically,

FENSE penalizes captions in five categories: incomplete

sentences, repeated events, repeated adverbs, missing con-

junctions, and missing verbs. This fluency penalty was also

added to the SPIDEr metric in the DCASE Challenge 2023

Task 6a [17]. The SPICE+ metric [18] finally tries to solve

issues that arise with its counterpart, SPICE, by carrying out

the evaluation within a language model framework.

B. Research in other fields

Analogies can be drawn between our research and active

areas within natural language processing (NLP), specifically:

(i) semantic role labeling (SRL), where predicate-argument

structures are modeled from sentences, and (ii) part-of-

speech tagging (POS), where words are tagged based on

their grammatical functions (e.g. subject or verb). While our

dataset is directly labeled by us, there is a clear relation be-

tween our labels and the classifications that an automated

SRL or POS model would assign. For example, the ARG-0

and V labels in a SRL model correspond, respectively, to

the WHO and HOW property in our model.

Our model performs entity recognition by labelling terms,

similar to the MEANT metric, and incorporates pretrained

masked language models (BERT and its derivative models)



TABLE II
SOUND DESCRIPTOR CATEGORIES USED IN CALCULATING CORRESPONDENCE

BETWEEN CAPTIONS.
ITEMS MARKED WITH * EXIST ONLY IN THE DATASET OF 13 LABELS.

Label Description

WHO sound-generating agent
WHO/WHAT PROPERTY* describes object or person
WHAT vibrating object or substance
HOW sound-generating actions/mechanisms
HOW PROPERTY* specifies action
WHEN temporal context
WHERE spatial context
WHAT/WHERE* objects that contribute to acoustics
SOUND TYPE sound-signal categories
SOUND PROPERTY acoustic/auditory sound properties
NON-AUDITORY SENSATION non-auditory attributes of sound
OTHER labels that do not describe sound
O omitted labels

to capture the sound descriptors of captions. Furthermore,

similar to the SPIDEr-FL score, our metric integrates the

fluency penalty from the FENSE metric. In summary, our

approach involves computing the cosine similarity of the

embeddings, focusing on the correspondence of sound

descriptor categories. We also incorporate in our approach

a fluency penalty and, in the absence of overlap, default to

sentence-BERT embeddings.

III. METHODS

The backbone of the proposed metric is a NLP model

that is capable of classifying words from human (or model)

generated captions into a set of sound descriptor categories.

These categories reflect semantic attributes of the sound-

generating objects and events that listeners derive from

sounds, and have been derived from a recent survey of

taxonomies of everyday sounds [4] (see Table II). This

word model is then applied to both the candidate and the

reference captions, and a score is calculated that reflects

the similarity of their sound descriptor categories.

A. Model training

To obtain this word-classification model, a random sub-

set of captions from the Clotho dataset was annotated. The

Clotho dataset is widely used in AAC and consists of 29,645

captions for 5,929 audio excerpts, each 15 to 30 seconds

long [19]. Various pre-trained NLP models were fine-tuned

to this dataset, and their performance compared to deter-

mine the most effective classifier (see below). Specifically,

two word-labeled caption datasets were generated using

the Prodigy web annotation tool [20]. In the initial training

iteration, every word in each caption was labeled with one

category from a set of 10 (dataset 1). For the final model,

a set of 13 labels was used (dataset 2) (see Table II).

Dataset 1 consists of 2300 captions labeled by 3 annota-

tors, with 1120 captions being duplicates across annotators

for the estimation of annotator agreement statistics. The

annotators labeled 694, 1387 and 219 labels captions, re-

spectively. The average inter-annotator agreements (Cohen’s

TABLE III
COMPARISON OF BERT-BASED MODELS ON TOKEN CLASSIFICATION OF OUR

DATASET. THE HIGHEST SCORES ARE IN BOLD. THE GROUPS OF MODELS ARE

10 LABELS ( TOP) AND 13 LABELS (BOTTOM).

Name F1 F1 How F1 What F1 Where F1 Who

10 Labels

BERT 81.6 88.3 80.6 78.5 85.3
RoBERTa 81.2 89.5 79.3 79.2 80.0
XLM RoBERTa 79.7 85.8 80.5 78.0 81.0
ALBERT 80.6 87.0 81.2 76.8 83.7
DeBERTa 79.7 85.6 80.1 75.6 83.9

13 Labels

BERT 80.3 90.8 80.6 86.0 91.2
RoBERTa 84.2 91.8 84.7 92.3 90.9
XLM RoBERTa 84.2 93.7 85.6 83.9 92.9
ALBERT 83.0 91.4 87.5 84.5 95.5
DeBERTa 80.9 88.7 87.1 84.7 87.9

kappa coefficient), averaged across annotator pairs, and

annotations, were 0.808, 0.836 and 0.839. To train our

models, duplicates were filtered out to ensure that they

did not lead to biased results from training items multiple

times per epoch or data leakage in the test set, leaving

1158 captions in the final dataset. Of these 1158 captions,

the annotators labeled 285, 727 and 146 respectively.

We applied a similar procedure to dataset 2, which was

labeled by two annotators, with a Cohen’s kappa coefficient

of 0.794. Dataset 2 is a subset of dataset 1, but contains

more descriptor categories. Dataset 2 initially contained

989 captions, where the annotators covered 494 and 495

captions, respectively. After removing duplicates, the final

dataset contained 500 unique captions. Although in dataset

2 there were more sound descriptors and less training data

than dataset 1, this resulted in an increase in classification

F1 scores.

Using the 2 labeled datasets, various pre-trained Trans-

former encoder models were fine-tuned with a classification

head (see Table III), as implemented in the HuggingFace

Transformers library [21]. During tokenization, each cap-

tion was split into tokens, each corresponding to a sound

descriptor. Tokens from words that did not correspond to

a sound descriptor in our dataset were assigned the label

O and omitted. For training, we used an AdamW optimizer

[22], with a learning rate of 2e-5 and weight decay. The

labeled dataset was divided into 80% train and 20% test

sets. The model was trained for 5 epochs, since initial

tests showed that after 5 epochs overfitting might occur,

as identified by observing a growing difference between

the training and validation losses after the fifth epoch. For

each trained NLP model, the averaged and category-specific

(Who-What-How-Where) F1-scores on the test set for the

two distinct variants of models were obtained using 10 (top)

or 13 (bottom) labels (Table III). This F1-score gives an

indication how well the model is capable of classifying the

sound descriptors on unseen sentences.



B. Metric definition

The fine-tuned model is then applied to both the can-

didate and the reference captions. For example, for the

sentence “a person is walking on a hard surface”, groups of

tokens person, walking on and hard surface are categorized

into WHO, HOW and WHAT/WHERE respectively. In the

case of 5 reference captions instead of 1 reference caption,

the words per category in each of the reference captions are

combined (e.g. WHO in “bird caws” “bird croaks” becomes

“bird bird”).

For each of these group of words, a corresponding sen-

tence embedding is calculated with SBERT [23]. The cosine

similarity is computed on overlapping sound descriptors

(e.g. WHO in candidate and reference). This ensures focus

on entities present in the candidate text and optimizes

for better wording per descriptor category. However, a

drawback is that it may neglect entities found in reference

texts that do not exist in the candidate (see Appendix B for

examples).

The cosine similarity of the overlap is calculated as

follows. For each candidate and reference caption C and

R, for each candidate and reference token c ∈C and r ∈ R,

given the sound descriptor of c,r : 
,r ∈Cl ∩Rl , the cosine

similarity is calculated as:

CosSim(c,r ) =
E (c)⊺ ·E (r )

‖E (c)‖‖E (r )‖

with E (·) representing the embedding of the token. As we

use pre-normalized vectors, cosine similarity is reduced to

E (c)⊺·E (r ). This cosine similarity score indicates the relation

of each pair of tokens so that similar tokens in sound

descriptors also get a high score, contrary to using the n-

gram.

From this cosine similarity, the maximum score of the

precision (Pr) and recall (Re) overlap of the candidate and

reference tokens is taken, similarly to BertScore [16].

Pr (
,r) =
1

|r|

∑

r∈r

max
c∈


CosSim(c,r )

Re(
,r) =
1

|
|

∑

c∈


max
r∈r

CosSim(c,r )

The F-score is computed by weighting 9 times more the

recall of the token than the precision, as done similarly for

the METEOR metric, and shown to improve the correlation

with human judgement [10]. Consistently, we also observed

a positive correlation between emphasis on recall and better

outcome on the FENSE benchmark.

The ACES metric puts focus on the token with the

highest similarity score between the candidate and the

references due to the maximization in the above formula.

This approach has limitations. For instance, it may overlook

irrelevant tokens even if they are categorized similarly. Ad-

ditionally, the metric does not consider captions composed

of compound sentences. In such cases, the ACES score em-

phasizes only on the category in one part of the compound

sentence with the greatest similarity, disregarding the rest.

Fscore(
,r) =
10Pr Re

Re +9Pr

All embeddings are then averaged:

Fsingle(C ,R) =
1

|C ∩R|

∑


,r∈C∩R

Fscore(
,r)

If there is no overlap at all, we set the score to 0. As a last

step, a small penalty is added to our scoring method. This

penalty is designed to slightly decrease the scores of shorter

sentences that include fewer entities. The penalty formula

is as follows:

penalty = (|L|− |Cl ∩Rl |)
1

|L|

1

1850

L is defined by the total number of possible sound de-

scriptors, in this case 13. |Cl ∩Rl | is the number of sound

descriptors that are the same in both the candidate and

reference captions. This penalty is subtracted from the F-

score for each pair of candidate and reference sentences,

resulting in the following formula:

ACES1(C ,R) = Fsingle(C ,R)−penalty

The reason for this penalty of 1850 is based on our belief

that longer sentences, which usually have more entities,

should be encouraged in AAC. However, tests showed that

higher penalties did not lead to better performance on the

FENSE benchmark. By applying only a slight penalty, a

preference for detailed sentences is still included, and the

metric still correlates well with human evaluation.

For each candidate and reference caption C and R a

single value is returned. An extra fluency error detection

penalty is added, similar to the one in the FENSE and

SPIDER-FL metrics [3]. The best results were found by

putting a weight of 0.5 instead of 0.9, the default value in the

FENSE metric (see Appendix A). For every single candidate

and reference caption, ACES is computed as:

ACES(C ,R) = ACES1(C ,R)−0.5×fluency(C )×ACES1(C ,R)

A combined ACES score for a whole dataset is calculated

by taking the average across the pairs of candidate and

reference captions.

C. Hyperparameter tuning

To find the optimal parameters for our model, a hyperpa-

rameter tuning phase is performed. During hyperparameter

tuning, the library WandB and its sweep function with

Bayesian optimization [24] carry out a search through 18

different parameters (see Appendix A, for an overview). The

Bayesian optimization narrows the search scope by focus-

ing on parameters showing the most promise. When the

parameters are adjusted, the total score on Clotho-Eval is

maximized, with the aim of outperforming the other models

on the FENSE benchmark (see Table V). The emphasis for

maximization is put on the Clotho-Eval benchmark, since

its captions have longer sentences than Audiocaps-Eval

(11.334 vs 8.796 words on average) and contain on average



TABLE IV
MODELS WERE EVALUATED CONSIDERING SEVERAL METRICS, INCLUDING OUR

PROPOSED METRIC ACES.

BERTScore FENSE ROUGEL SPIDEr ACES

Baseline 2021 82.3 1.9 27.3 6.4 15.7
AudioCaption 89.1 37.7 28.9 14.2 42.2
Baseline 2022 90.5 45.7 36.5 23.1 46.1
PANNs + BART 90.7 46.8 37.6 25.2 47.9
PASST + BART 90.8 48.3 37.8 26.0 48.8
Baseline 2023 90.7 48.3 38.7 27.0 49.3

more entities (5.433 vs. 4.742). However, the initial results

showed that optimizing for one benchmark also resulted in

better results for the other benchmark.

The final parameters are from a run of a model that

specifically outperforms some values on the FENSE bench-

mark and has a good overall result. Several configurations

of the ACES model outperformed other metrics on the

benchmark, but the final configuration also included values

that resembled previous metric research on the METEOR

and Fluency detection methods [10, 3].

D. Optimization

Since the use case for this benchmark is during model

validation, an essential part of the work is to optimize the

model for implementation speed. The final model requires

about 6.4GB of RAM for the token classification part, and

the model for the embeddings uses about 1.2 GB of RAM.

This is optimized by quantizing the model weights to float16

precision, resulting in a model size reduction of about 50%.

Also, the model can easily perform distributed calculations

by automatically scaling up to multi-GPU inference with

the Accelerate Python package [25].

Additionally, by relying on a smaller version of the

RoBERTa model (RoBERTa-base instead of RoBERTa-large),

we are able to achieve a 25% speedup in the computation

of ACES at the cost of a negligible drop in performance.

IV. EXPERIMENTS

We evaluated our models by comparing them to similar

metrics in AAC. In parallel, our models are tested against the

FENSE benchmark to allow the estimation of its predictions

of human evaluations. The FENSE benchmark consists of

two datasets, Clotho-Eval and AudioCaps-Eval. These are

derived from the Clotho and AudioCaps dataset, respec-

tively, and contain human evaluations for 4 categories of

pairs (see section IV-B).

A. Model evaluation

We evaluated several AAC models using the BERTScore,

FENSE, SPIDEr and the proposed ACES metrics to compare

the metrics against each other. The DCASE baselines for

this year and last year were used as benchmarks for the

metrics. The 2021 baseline model was an encoder-decoder

architecture based on GRU’s [26], whereas the 2022 model

had a VGGish encoder and a BART-based decoder. In ad-

dition to the 2022 model baseline, two other versions were

added. In these two versions, the VGGish encoder network

was replaced by a PANNs [27] and PaSST [28] encoder,

respectively. The 2023 model baseline is also included,

which uses a special pretrained CNN encoder based on

PANNs.

Table IV displays the evaluation results of AAC models.

ACES has more variation to BERTScore, which is helpful

for discriminating results that are close to each other.

ACES scores are consistent with other metrics. Notably,

BERTScore and FENSE rate PASST + BART similarly to the

Baseline 2023 model. Other metrics favor the baseline 2023

model, including ACES. This could indicate that ACES is a

more reliable metric than BERTScore and FENSE, although

further investigation is required.

B. Human evaluation

We used the FENSE benchmark [3] to evaluate our

score against human evaluations, and to compare ACES to

several other metrics (see Table V). The FENSE benchmark

comprises four components, each designed to calculate the

quality of a candidate metric compared to its reference: (i)

human-correct (HC), (ii) human-incorrect (HI), (iii) human-

machine (HM) and (iv) machine-machine (MM). For each

of these components, 4 human evaluators compare two

candidate captions for each sound, and indicate which

target sound is better (final outcome based on majority

vote with target sound not considered in the absence of a

majority). For the HC component, both candidate captions

are generated by human annotators describing the same

sound (human captioning data from Clotho and AudioCaps

datasets) For HI, a caption generated by a human annotator

for a target sound is compared with a human-generated

caption for a different sound. The HM component com-

pares instead a human caption with a caption for the same

target sound generated with a captioning model. The MM

component finally compares machine-generated captions

from two captioning models (see [3], for details). Audio

captioning metrics are finally bench marked against the

majority-based human evaluation of the candidate cap-

tions, with the final score measuring the proportion of

target sounds for which the captioning metric and human

evaluators agreed in their choice of the best captions among

the two candidates.

On this FENSE benchmark, approaches that use com-

putational similarity of contextualized embeddings (ACES,

FENSE, BERTScore, BLEURT, Sentence-BERT, SPICE+emb),

are favored over approaches that use entity labeling (SPI-

DEr, SPICE+). This could indicate that participants’ judg-

ments of descriptions from the FENSE benchmark are

correlated with distances between descriptions in the BERT

embedding space.

https://github.com/audio-captioning/dcase-2021-baseline
https://github.com/wsntxxn/AudioCaption
https://github.com/felixgontier/dcase-2022-baseline
https://github.com/felixgontier/dcase-2023-baseline


TABLE V
PERFORMANCE OF VARIOUS METRICS ON AUDIOCAPS AND CLOTHO (BOLD = TOP VALUES).

Metrics AudioCaps-Eval Clotho-Eval

HC HI HM MM Total HC HI HM MM Total

SPIDEr 53.2 89.9 84.1 55.2 65.4 47.9 88.1 67.9 52.5 59.8
BERTScore 60.6 97.6 92.9 65 74.3 57.1 95.5 70.3 61.3 67.5
BLEURT 77.3 93.9 88.7 72.4 79.3 59 93.9 75.4 67.4 71.6
Sentence-BERT 64 99.2 92.5 73.6 79.6 60 95.5 75.9 66.9 71.8
FENSE 64.5 98.4 91.6 84.6 85.3 60.5 94.7 80.2 72.8 75.7

SPICE+ 59.1 85.4 83.7 49 62 46.7 88.1 70.3 48.7 57.8
SPICE+emb 63.5 96.4 91.6 70 77 61 94.7 76.3 61.6 68.9

ACES 64.5 95.1 89.5 82.0 83.0 56.7 95.5 82.8 69.9 74.0

V. DISCUSSION

Overall, the ACES metric demonstrates comparable per-

formance to other metrics in the FENSE benchmark, and

notably outperforms all other metrics in the human-

incorrect (HI) and human-machine (HM) categories on the

Clotho-Eval dataset. ACES provides a versatile backbone

that can be used to recognize a sentence’s entities, which

can be helpful for explainability purposes.

ACES calculates a score based on semantic descriptors

and shows promising results in comparison to other metrics

on the FENSE benchmark. A comparison between metrics

with several examples is shown in Appendix B. This ap-

pendix also showcases some drawbacks of our approach,

including cases where there is no overlap of semantic

descriptors. In case of no overlap, ACES assigns the score

0. It also only takes the most similar entity into account:

in case of lower sentences with linking words, it focuses on

the most similar word per semantic descriptor.

Results from candidate captions that exhibit an higher

ACES score contain several sound descriptors that are high

in cosine similarity of the vector representation to the

ground truth vector representation. These sound descrip-

tors are important to include in a caption, as they represent

listeners’ verbal descriptions of everyday sounds.

VI. CONCLUSION

We introduced Audio Captioning Evaluation on Seman-

tics of Sound (ACES), a novel AAC evaluation metric based

on audio semantics. ACES combines both semantic similar-

ities and semantic entity labeling, resulting in an approach

for evaluating audio captions that departs from earlier work

relying exclusively on embeddings, or n-grams, or entities.

ACES combines elements from earlier research on AAC

evaluation and outperforms other metrics on the FENSE

benchmark.

Future research can explore several promising directions,

such as the involvement of large language models such as

GPT-4 to evaluate sentences for fluency issues and to grade

semantic richness and factual correctness in generated

captions. A strategy for this could be to train a large lan-

guage model on how a human would evaluate a dataset of

generated audio captions and create an automatic pipeline

for the caption evaluation.
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APPENDIX A

OVERVIEW OF HYPERPARAMETERS

In bold the parameter that performed the best in the

hyperparameter tuning. Percentages are correlation scores

with Clotho-Eval Total in total for all runs. See also the

WandB Report.

• model: ("gijs/aces-roberta-10", "gijs/aces-roberta-13")

Selects which pre-trained ACES model to use for

named entity recognition and embedding extraction.

The options are the 10 label or 13 label versions, which

detect different numbers of entity types.

• fl_weighing: (True, False) (34.9%). Determines whether

a fluency model should be added to the model. This

model detects sentences with errors in them and pe-

nalizes them with F1_weight (float between 0.0 and 1.0)

(1.4%): which controls the amount the score is reduced

if an error is detected.

https://api.wandb.ai/links/aud2sem/md9xlq8h


• average_strategy: ("simple", "first", "max", "average")

Controls how the per-token predictions from the ACES

model are aggregated into entities.

• use_sbert: (True, False) (22.7%) Determines if Sentence-

BERT is used to calculate entity embedding similarity

rather than the native ACES embeddings.

• division: (float between 0.0 and 1.0. 0.998) (-2.6%)

Controls weighting between the cosine similarity score

and the entity overlap score.

• F1_calc: ("mean", "mean-max", "max-mean", "max-

max"). Sets how precision and recall are combined

to calculate F1 between the candidate and reference

entities.

• F1_beta: (float between 0.1 and 10.0. 9.0) (1.9%) Con-

trols beta parameter that balances precision and recall

for F-beta score for the cosine similarity

• F1: (float between 0.1 and 10.0. 3.798) (9.3%) Controls

the beta parameter that balances precision and recall

for F-beta score for the overlap.

• apply_penalty: (True, False) (-8.6%). Boolean for

whether to apply the entity overlap penalty. This is

to penalize sentences that have only a few classes,

as we prefer longer more descriptive sentences over

shorter ones (“bird caws noisily with an alarming tone”

over just “bird caws”). penalty_score (int between 1

and 2000. 1850) (-5.5%): Penalty applied when there is

no entity overlap. Higher values decrease this penalty.

If there are a lot of labels in the sentences, it still

corresponds to a high score.

• overlap_type: ("cand", "ref", "both", "F1"). Sets the

formulation of entity overlap used. Based on the can-

didate, reference, both, or F1-weighted overlap.

• distance_technique ("cosine", "Euclidean"): Distance

metric to calculate entity embeddings.

• use_score: ("pairwise", "mean", "no"). With the pair-

wise score, both the combination of the similarity score

and the overlap of the entities per combination of

sentences are calculated. "mean" corresponds to calcu-

lating the overlap after taking the mean. score_weighing

(float between 0.0 and 1.0. 0.5) (18.0%): Controls bal-

ance between embedding similarity and overlap when

combining values.

• overall_sbert: (True, False). Whether to incorporate

an additional overall SentenceBERT similarity between

the candidate and reference. overall_sbert_weight (float

between 0.0 and 1.0. 0.5) (-8.2%): Weighting on over-

all SBERT similarity when used. sbert_based_on_scores

(True, False) (4.3%): Only uses SBERT similarity if the

ACES score is 0, which is the case when there are no

labels at all present.

APPENDIX B

IN DEPTH COMPARISON OF ACES WITH PREVIOUS METRICS

This Appendix presents selected examples of the FENSE

benchmark, featuring both successful and unsuccessful

cases of scoring from the ACES metric. The examples are

displayed in Table VI. The first three examples demonstrate

situations where ACES outperforms FENSE and other mea-

sures. The final two instances reveal ACES’s limitations.

In the initial example, “a door is followed by a”, both

SPICE and ACES score 0.0 due to their reliance on over-

lapping semantic pairs. SPICE utilizes nonexisting graph

overlap based on its semantic graph, and ACES relies on

its semantic sound categories in the captions. For ACES it

returns 0 due to “door” being the sole recognized WHAT

entity and in the reference captions no WHAT entities.

Other metrics, however, return similar, albeit higher, scores.

The second example highlights a more pronounced gap

between the ACES and FENSE scores. The lower score

for ACES arises because of the difference in length be-

tween the references and candidate captions, affecting the

overlap in categories considered. The candidate caption

is classified into three categories. WHO (“birds”, “young

peoples”), HOW: (“cackling”). WHAT: (“voices”). For WHAT

(“voices”), ACES matches it to the only WHAT in the

references: “wings”, which drives the score down. However,

less descriptive sentences may be the origin of the lower

score.

For the third scenario, ACES again assigns a lower score

compared to other metrics. This is due to the reference

caption containing only WHO and HOW categories, creating

a mismatch on HOW between the candidate and references.

The candidate’s “rolling” and “strikes” differ from the refer-

ence’s “roars”, “falls” and “falling”. Despite similar overall

overlap, they are missing some key components, i.e. no

mention of lightning in any of the references.

The fourth example exhibits considerable overlaps result-

ing in a higher ACES score. However, certain elements, such

as “in a quiet environment”, are absent. In the candidate

caption, there are no similar WHERE matches, which results

in ACES wrongly attributing a high score to a caption

missing contextual details.

Finally, the fifth example highlights another instance

where ACES scores higher on average compared to other

metrics. This results from the similarity in WHO and HOW

categories between the candidate and reference captions.

Yet, ACES does not fully discern the difference between

“speaking” and “shouting”, focusing instead on the en-

tity with the greatest overlap, in this case, the HOWs

“squeaking” and “bouncing”, which are present in both the

candidate and reference captions.



TABLE VI
CANDIDATE AND REFERENCE EXAMPLES FROM THE FENSE BENCHMARK WITH CORRESPONDING AAC METRICS

Candidate References METEOR ROUGEL SPICE BERTScore FENSE ACES

A door is followed by a

Some scratching and rustling
with small clicks

Rustling and some knocks

Some rustling and scratching
with a short click

Continuous clanking and rustling

0.0265 0.1393 0.0 0.9814 0.0311 0.0

Birds cackling and
young peoples voices

A man speaking followed by
pigeons cooing and flapping wings
then a kid speaking and someone
claps loudly

A man talking then a young boy
talking followed by a loud pop
as pigeons coo and bird wings flap

A man talking followed by pigeons
cooing and bird wings flapping
then a young man talking

A male voice speaks and a bird coos
and flaps its wings

0.0440 0.1680 0.0541 0.9646 0.6621 0.3230

Rolling thunder with
lightning strikes

Thunder and a gentle rain

Thunder roars in the distance as
rain falls

Rain falling with thunder in the
distance

Rain and thunder

0.1741 0.2618 0.2000 0.9858 0.6899 0.4755

Typing on a computer
keyboard

Typing on a keyboard is occurring
in a quiet environment

Typing on a keyboard is ongoing
in a quiet environment

Typing on a keyboard is occurring
in a quiet environment

Typing on a keyboard is ongoing
in a quiet environment

0.2049 0.5031 0.2500 0.9882 0.7101 0.9677

Squeaking and bouncing
followed by a man speaking

Several basketballs bouncing and
shoes squeaking on a hardwood
surface as a man yells in the distance

A man yelling in the background as
several basketballs bounce and shoes
squeak on a hardwood surface

A man yelling in the distance as
several basketballs bounce and shoes
squeak on hardwood floors

Multiple basketballs bouncing on a
hard surface and shoes squeaking
as a man shouts in the distance

0.1373 0.2254 0.0 0.9752 0.5331 0.8676
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