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Abstract—Unrolled optimization methods have emerged as a
way to combine classical iterative optimization techniques with
learned priors to efficiently solve image restoration problems.
However, learning the regularization prior along the unrolled
iterations requires intensive memory usage due to the deep
explicit backpropagation, hence making the number of unrolled
iterations usually small in practice. Inspired by deep equilibrium
models, unrolling models with implicit backpropagation have
been considered for solving this issue. Nevertheless, while these
methods yield good restoration quality with reduced memory
usage, the theory of implicit backpropagation relies on the
knowledge of the fixed point of the function to optimize,
usually unknown and estimated by iterating until convergence.
Therefore, these methods require intensive computation time to
ensure a stable backpropagation. In this paper, we present an
unrolled Proximal Point Algorithm method, where the end-to-
end optimization problem is re-defined as a per unrolled iteration
optimization problem. We prove that the proposed optimization
strategy is memory-efficient and applicable for any number
of computed unrolled iteration. We empirically show that our
method achieves state-of-the-art image restoration quality.

Index Terms—unrolling, stochastic, inverse problems, Proximal
Point Algorithm, ADMM

I. INTRODUCTION

Image restoration problems are formalized as the recovery
of an image given noisy or incomplete observations. The
problem being ill-posed, a common strategy consists in intro-
ducing some prior knowledge on the typical images we attempt
to restore, which helps restricting the class of admissible
solutions. These priors have evolved from handcrafted priors
such as sparse priors [1] to learned priors. Learned priors
have been introduced as regularization constraints in iterative
optimization methods, e.g., the gradient descent method [2]
and the Alternating Direction Method of Multipliers (ADMM)
[3].

With the rise of deep learning, unrolled optimization al-
gorithms have emerged as a way to combine iterative opti-
mization and deep learning. The network is trained end-to-end
within the iterative algorithm, hence in a way which takes into
account the degradation operator. Performing a fixed number
of unrolled iterations yields optimized results for a given
inverse problem. Several optimization algorithms have been
unrolled, e.g., the Iterative Shrinkage Thresholding Algorithm
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(ISTA) [4], the gradient descent [5], the proximal gradient [6],
the Half-Quadratic Splitting (HQS) [7] and the Alternating
Direction Method of Multipliers (ADMM) [8].

The end-to-end network optimization in unrolled methods
requires backpropagating gradients through the whole iterative
scheme. Thus, the memory usage of this explicit backpropa-
gation scales linearly with the number of unrolled iterations,
hence limiting the number of iterations that can be used in
practice. Deep Equilibrium based approaches [9]–[11] intro-
duced implicit backpropagations to reduce the memory usage
of the backpropagation. Contrary to an explicit backpropaga-
tion, the memory requirements for an implicit backpropagation
do not depend on the number of unrolled iterations. However,
the theory of the implicit backpropagation relies on the fixed
point of the function to optimize, usually estimated by iterating
until idempotence, leading to a considerable computation time.

In this paper, we propose a novel memory-efficient unrolled
optimization algorithm based on the ADMM. Each unrolled
ADMM iteration is re-defined as a proximal mapping, by
exploiting the fact that the ADMM is an application of the
Proximal Point Algorithm [12], [13]. A stochastic training
of the learned weights is performed by considering per-
iteration optimization problems. This optimization strategy
is thus independent of the number of computed unrolled
iterations and is mathematically justified even if the fixed point
is not estimated, hence making the training possible for any
arbitrary number of unrolled iterations. We assess the method
for deblurring and super-resolution in comparison with several
recent unrolled optimization methods and task-specific deep
methods. We show that the proposed method achieves state-
of-the-art restoration performances for every inverse problem.

II. BACKGROUND

A. Problem statement

Let the image acquisition process be represented by the
following linear system:

y = Ax+ ϵ, (1)

where y and x are respectively the observed and the original
images, A is a matrix representing the acquisition process and
ϵ is a Gaussian noise with standard deviation σ0. The problem
of restoring the original image x from the measurements y is
usually ill-posed due to the ill-conditioned matrix A. We thus



Fig. 1: Unrolled ADMM optimization with a learned network
acting as a Gaussian denoiser.

need to introduce some prior on the signal that we are trying
to recover, via a regularization constraint r(x). The problem
of recovering an estimated image x̂ is therefore re-written as:

x̂ = argmin
x

1

2
∥y −Ax∥22 + σ2

0r(x), (2)

The solution x̂ is thus searched by minimizing the objective
function in Eq. (2) composed of two terms: a data-fit term
1
2∥y −Ax∥22 and a regularization term r(x).

B. Unrolled optimization with learned priors

First methods for solving inverse problems posed in Eq.
(2) have been using iterative optimization techniques, such as
the gradient descent [2] and the Alternating Direction Method
of Multipliers (ADMM) [3]. Several iterative optimization
algorithms have been unrolled, introducing a learned complex
prior to regularize the optimization problem. In this paper, we
mainly focus on the unrolled ADMM, depicted in Fig. 1. An
iteration of the ADMM consists of the following three steps:

x̂(k+1) = argmin
x

1

2
∥y −Ax∥22 +

ρ

2
∥x− v(k) + u(k)∥22, (3)

v(k+1) = argmin
v

ρ

2
∥v − x̂(k+1) − u(k)∥22 + σ2

0r(v), (4)

u(k+1) = u(k) + (x̂(k+1) − v(k+1)), (5)

where x̂ and v are the proximal operators of respectively the
data-fit term and the regularizer in Eq. (2), and u is the dual
variable. In a nutshell, each iteration of the ADMM improves
the current estimate by alternatively minimizing the proximal
operators of the data-fit term and the regularization term. After
several iterations, the algorithm converges to a solution which
minimizes both terms. We can notice that the computation of
v(k+1) can be re-written as a Gaussian denoising step:

v(k+1) = argmin
v

σ2r(v) +
1

2
∥v − x̂(k+1) − u(k)∥22, (6)

with σ = σ0√
ρ . Eq. (6) is then a special case of Eq. (2),

where A is the identity matrix and the Gaussian noise standard
deviation is equal to σ. The proximal operator in Eq. (4) can
thus be replaced by a network trained as a Gaussian denoiser
for noise standard deviation σ:

v(k+1) = Denoiser(x̂(k+1) + u(k), σ, θ). (7)

In this case, the network is pre-trained independently of the
inverse problem in hand. Unrolling the ADMM aims to fine-
tune the learned denoiser for a specific inverse problem. The
denoiser is thus learned end-to-end within the ADMM, such
that the unrolled ADMM best reconstructs the original image.

C. Unrolling with implicit backpropagation
While classical iterative methods iterate until convergence,

unrolled optimization algorithms consider a fixed and small
number of iterations, to limit the memory usage of the end-
to-end explicit backpropagation at training time. Deep Equi-
librium (DEQ) [9], [10] and Jacobian-Free Backpropagation
Implicit (JFBI) [11] Networks have been introduced using
implicit backpropagations. The differentiation is re-written so
that the backpropagation is done only over the last iteration,
hence making the memory usage independent of the number of
unrolled iterations. However, implicit backpropagation heavily
relies on the assumption that the fixed point of the iterative
algorithm exists and is reached in practice to compute the
gradients accurately. The strategy to compute the fixed point is
to iterate until idempotence, estimated with an approximation
error value ϵ. While a high value of ϵ may lead to instability
due to a wrong estimation of the fixed point, a low value
increases the number of iterations, i.e., the computation time.

III. STOCHASTIC UNROLLED PROXIMAL POINT
ALGORITHM

Both explicit and implicit backpropagations aim to optimize
the network parameters θ in order to fit the output of the
unrolled iterative algorithm to the groundtruth. Instead, we
define the unrolled ADMM as an unrolled Proximal Point
Algorithm (PPA) where the backpropagation uses the inter-
mediate unrolled iterations independently of each other.

A. Unrolled Proximal Point Algorithm
The Proximal Point Algorithm (PPA) introduced in [14]

iteratively computes the proximal point:

x̂(k+1) = proxg(x̂
(k)), (8)

with proxg(x̂
(k)) = argmin

x
g(x) +

1

2
∥x− x̂(k)∥22. (9)

When g is convex, the PPA converges to the minimum of
g. Eckstein et al. [12] demonstrated that methods applying the
Douglas—Rachford splitting algorithm, such as the ADMM
[13], are special cases of the PPA. Let us now write the
ADMM parameterized with θ as the following series:

x̂(k+1) = f(x̂(k), θ), (10)

where, f represents one iteration of the ADMM algorithm,
i.e., f performs Eqs. (3), (4), (5), with Eq. (4) replaced by a
pre-trained Gaussian denoiser as in Eq. (7). The ADMM being
a special case of the PPA, there exists a scalar-valued function
g such that the ADMM iteration f(x̂(k), θ) is expressed as:

f(x̂(k), θ) = argmin
x

g(x, θ)+
1

2
∥x−x̂(k)∥22 = proxg(.,θ)(x̂

(k)).

(11)



Here, each ADMM iteration k aims to recover the solution
of the proximal operator of g. To learn the parameters θ of the
unrolled ADMM, we thus define an optimization problem for
each iteration k in order to fit f(x̂(k), θ) to proxg(.,θ)(x̂

(k)),
with g defined as a handcrafted convex function. We will show
in Section III-C that the end-to-end optimization problem of
the unrolled ADMM can then be reduced to a set of per-
iteration optimization problems.

B. Definition of g

With g convex, proxg(.,θ)(x̂
(k)) reduces the distance be-

tween the estimate x̂(k) and the fixed point of the ADMM
algorithm. Since the fixed point depends on θ, we will note it
x̂∗
θ . Thus, we define g(x̂, θ) as the weighted squared ℓ2-norm

between any image x̂ and the fixed point x̂∗
θ of the ADMM:

g(x̂, θ) =
1

2λ
∥x̂∗

θ − x̂∥22, (12)

with λ > 0. The proximal operator of g has thus a well-
known closed-form:

proxg(.,θ)(x̂) =
x̂∗
θ + λx̂

1 + λ
. (13)

From this definition, g is convex with respect to x̂ and one
can easily verify that iterative applications of proxg(.,θ) effec-
tively converges towards the fixed point x̂∗

θ , with a convergence
rate controlled by λ.

C. Loss function

Unrolled optimizations aim to optimize θ in order to
minimize the difference between the output x̂∗

θ and the
groundtruth image xgt. In addition, we propose to fit f(x̂, θ) to
proxg(.,θ)(x̂) for any x̂. We thus want to learn the parameters
θ to approximate:{

x̂∗
θ = xgt, (14)

f(x̂, θ) = proxg(.,θ)(x̂), ∀x̂. (15)

According to Eq. (13), this is equivalent to:{
x̂∗
θ = xgt, (16)

x̂∗
θ = (1 + λ)f(x̂, θ)− λx̂, ∀x̂ (17){

x̂∗
θ = xgt, (18)

xgt = (1 + λ)f(x̂, θ)− λx̂, ∀x̂ (19)

We can notice that Eq. (18) is equivalent to a particular case
of Eq. (19) where x̂ = x̂∗

θ , since f(x̂∗
θ, θ) = x̂∗

θ by definition
of the fixed point. The system can thus be expressed only
with Eq. (19). The end-to-end optimization of the unrolled
ADMM is thus reduced to a set of independent optimization
problems. However, optimizing θ for any possible images x̂
is impractical, since it would require integrating the loss over
the space of images. Instead, we consider only the images in
the optimization path, i.e., the intermediate estimates of the
unrolled algorithm, i.e., x̂(k),∀k ∈ {0, ...,K}. The full loss
function L is then written as follows:

L(θ, λ, x̂(0), ..., x̂(K)) =
1

K

K∑
k=0

l(θ, λ, x̂(k)) (20)

Fig. 2: Average validation PSNR per epoch during training
with different values of λ in Eq. (13), for image super-
resolution (bicubic x2 without antialiasing).

with:

l(θ, λ, x̂(k)) = ∥(1 + λ)f(x̂(k), θ)− λx̂(k) − xgt∥22. (21)

Each term of the sum in Eq. (20) considers x̂(k) as an input.
The computation of x̂(k) is then not taken into account for the
backpropagation, which is essential to keep it shallow. This
will be further discussed in Section III-D.

The latter loss L is however dependent on the design of the
convergence rate λ in Eq. (13). Its value need to be optimized
for both the estimation of the proximal mapping and the image
restoration problems, i.e., such that it minimizes the loss l
in Eq. (21) for any input x̂(k). We thus propose to learn λ
along with the weights θ. to automatically find its best value.
To illustrate the importance of correctly setting λ, we trained
the SUPPA with different values of λ on the same task. As
shown in Fig. 2, the value of λ drastically impacts the image
reconstruction quality. Furthermore, learning it offers the best
performances.

D. Stochastic unrolled iteration learning

Each term of the loss function L in Eq. (20) is associated
to a specific independent iteration k, with x̂(k) considered as
an input. Instead of considering all the K iterations at each
training optimization step, we propose a stochastic selection of
a small subset of iterations I ⊂ {1, ..,K}. The differentiation
of the loss L w.r.t θ can then be written as follows:

∂L
∂θ

=
1

card(I)
∑
i∈I

∂f(x̂(i), θ)

∂θ

T
∂l

∂f(x̂(i), θ)
. (22)

The differentiation of L w.r.t. λ can be simplified as:

∂L
∂λ

=
1

card(I)
∑
i∈I

∂l

∂λ
. (23)

The memory usage of the backpropagation is thus indepen-
dent of the number of unrolled iteration, and is instead only
dependent on the size of the subset of selected iterations I.



In order to favor high restoration quality, we always include
the last computed iteration in the set I. Hence, we propose
to use 2 iterations (card(I) = 2) per backpropagation: the
last iteration K and a randomly selected iteration k < K. We
have not observed further benefit in increasing the number of
randomly selected iterations. The SUPPA has thus the same
memory usage advantage as the implicit unrolled methods.

Algorithm 1 summarizes the different steps of the proposed
algorithm. Our PyTorch implementation of the method is
available at: https://github.com/BrandonLeBon/SUPPA

Algorithm 1 Proposed Unrolled Proximal Point algorithm

1: initialize θ, K, λ, ϵ
2: for each epoch do
3: for each batch do
4: x̂(0) ← input batch
5: xgt ← groundtruth batch
6: I ← random subset of {1, ...,K}
7: loss← 0
8: k ← 1
9: x̂(k) ← f(x̂(0), θ)

10: while k < K and ∥x̂(k−1) − x̂(k)∥ > ϵ do
11: if k ∈ I then
12: update loss with (20)
13: x̂(k+1) ← f(x̂(k), θ)
14: k ← k + 1

15: update θ and λ with (22) and (23)

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We evaluate the performances of our method on the
super-resolution and deblurring inverse problems, against
state-of-the-art unrolled and task-specific deep methods.
Additional visual results are reported on the project web page
(http://clim.inria.fr/DeepCIM/SUPPA/index.html).

Unrolled optimization methods: the selected reference
unrolled optimization methods are (i) the explicit unrolled
optimization with deep prior [5] (ii) the Deep Equilibrium
architectures for inverse problems (DEQ) [10] (iii) an
adaptation of the DEQ using the Jacobian-Free differentiation
[11], named Jacobian-Free Backpropagation Implicit Unrolled
(JFBI). Networks parameters are shared between all unrolled
iterations and are pre-trained in order to initialize the proximal
operator of the regularizer (4) for Gaussian noise removal as
presented in [16] with the DRUnet denoising architecture.
The explicit unrolled ADMM uses 6 iterations. As stopping
criteria for the DEQ, the JFBI, and the SUPPA, we use a
maximum of 50 iterations, with an idempotence estimated
with a precision of ϵ = 10−3 as in [10].

State-of-the-art task-specific deep methods: the efficient
task-specific deep methods considered are (i) the RCAN
method [17] and MoG-DUN method [18] for the super-
resolution (ii) the method of Dong et al. [19] for deblurring.

Training parameters: all the above methods have been
retrained. We used 75 epochs, a batch size of 16, a learning
rate of 10−5. We also used an additional learning rate of
10−1 for the convergence rate λ in the proposed method.
Super-resolution: we consider three scales: x2, x3 and x4.
The low resolution images are generated with a bicubic
downsampling without anti-aliasing. As initialisation, we
perform a bicubic interpolation on the downsampled image.
As in [18], we used the DIV2K dataset [20] [21] with random
patches of size 48x48 for training, and Set5 [22], Set14
[23] and BSDS100 [15] datasets for testing. We use the
closed-form presented in [16] to solve Eq. (3).

Deblurring: we consider a Gaussian blur kernel of
parameters σ = 2, size = 2 ∗ σ and a 1% noise level. As
in [19], we randomly cropped 256x256 patches from the
Waterloo Exploration dataset [24] for training and we used
the BSDS500 dataset [15] for testing. The exact solution x̂ in
Eq. (3) was computed using the same closed-form as for the
super-resolution with a scaling factor equal to 1.

B. Reconstruction performances
Reconstruction performances are evaluated with the mean

PSNR per dataset on the RGB channels. Note that the PSNR
values for RCAN and MoG-DUN are significantly different
from the original papers, since these are computed on the
Y channel of the YCrCb color space. Super-resolution and
deblurring results are respectively in Table I, and II. As
shown in both tables, our method performs as well as the
best unrolled methods, and outperforms the task-specific deep
methods for the two tested inverse problems.

TABLE I: Superresolution results (average PSNR)
Scale Set5 Set14 BSDS100

ZHANG et al. x2 34.30 dB 30.13 dB 28.81 dB
Ning et al. x2 34.59 dB 30.35 dB 30.02 dB
Unrolled x2 34.87 dB 30.42 dB 30.04 dB

DEQ x2 34.75 dB 30.28 dB 29.93 dB
JFBI x2 34.96 dB 30.61 dB 30.09 dB

SUPPA x2 34.92 dB 30.54 dB 30.08 dB
Zhang et al. x3 29.60 dB 25.67 dB 25.91 dB
Ning et al. x3 29.63 dB 25.65 dB 25.93 dB
Unrolled x3 30.06 dB 26.03 dB 26.33 dB

DEQ x3 29.94 dB 25.95 dB 26.27 dB
JFBI x3 29.97 dB 25.90 dB 26.31 dB

SUPPA x3 29.95 dB 25.90 dB 26.30 dB
Zhang et al. x4 27.50 dB 23.80 dB 24.67 dB
Ning et al. x4 27.77 dB 24.28 dB 24.79 dB
Unrolled x4 28.27 dB 24.63 dB 25.21 dB

DEQ x4 27.21 dB 24.17 dB 24.44 dB
JFBI x4 28.34 dB 24.63 dB 25.16 dB

SUPPA x4 28.20 dB 24.63 dB 25.12 dB

C. Convergence of the unrolled methods
Fig. 3 illustrates the convergence of the unrolled methods.

First, we can notice that the explicit unrolled method does

https://github.com/BrandonLeBon/SUPPA
http://clim.inria.fr/DeepCIM/SUPPA/index.html


Fig. 3: Average PSNR per unrolled iteration for the different unrolled methods and for (left) super-resolution (x4) on the
BSDS100 dataset [15], (right) Gaussian de-blurring on the BSDS500 dataset [15].

TABLE II: Deblurring results (average PSNR)
BSDS500

Dong et al. 27.28 dB
Unrolled 27.68 dB

DEQ 27.25 dB
JFBI 27.55 dB

SUPPA 27.60 dB

not converge, since it is optimized for a specific number
of iterations. Both the implicit backpropagation methods and
SUPPA tend to converge, which is an expected behaviour of
the ADMM algorithm. Furthermore, SUPPA converges faster
than the JFBI and DEQ methods. A possible explanation is
that in SUPPA, we explicitly introduce a convergence rate
parameter λ allowing a control over the convergence speed,
while JFBI and DEQ tend to use the maximum number of
iterations allowed in the training (50 in our experiments).

V. CONCLUSION

In this paper, we proposed a novel unrolled learning-based
iterative optimization for solving image restoration problems.
The proposed per-iteration optimization strategy permits to
significantly reduce the computational burden of training un-
rolled optimization algorithms, in terms of both memory usage
and computation time, while yielding a reconstruction quality
on par with the state-of-the-art for the tested applications (i.e.,
super-resolution and deblurring), considering both other recent
unrolled and task-specific deep methods.
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[2] C. Lemaréchal, “Cauchy and the gradient method,” Doc Math Extra,
vol. 251, no. 254, p. 10, 2012.

[3] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[4] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in International Conf. on international conference on machine
learning, 2010, pp. 399–406.

[5] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein, “Unrolled
optimization with deep priors,” arXiv preprint arXiv:1705.08041, 2017.

[6] M. Mardani, Q. Sun, D. Donoho, V. Papyan, H. Monajemi,
S. Vasanawala, and J. Pauly, “Neural proximal gradient descent for
compressive imaging,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[7] U. Schmidt and S. Roth, “Shrinkage fields for effective image restora-
tion,” in IEEE Conf. on computer vision and pattern recognition, 2014,
pp. 2774–2781.

[8] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep admm-net for compressive
sensing mri,” in International Conf. on neural information processing
systems, 2016, pp. 10–18.

[9] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[10] D. Gilton, G. Ongie, and R. Willett, “Deep equilibrium architectures
for inverse problems in imaging,” IEEE Transactions on Computational
Imaging, vol. 7, pp. 1123–1133, 2021.

[11] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin,
“Jfb: Jacobian-free backpropagation for implicit models,” AAAI Conf.
on Artificial Intelligence, 2022.

[12] J. Eckstein and D. P. Bertsekas, “On the douglas—rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, 1992.

[13] D. Gabay, “Chapter ix applications of the method of multipliers to
variational inequalities,” in Studies in mathematics and its applications.
Elsevier, 1983, vol. 15, pp. 299–331.

[14] B. Martinet, “Regularisation, d’inéquations variationelles par approxi-
mations succesives,” Revue Francaise d’informatique et de Recherche
operationelle, 1970.

[15] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2010.161

[16] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-
and-play image restoration with deep denoiser prior,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2021.

[17] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in
European conf. on computer vision (ECCV), 2018, pp. 286–301.

[18] Q. Ning, W. Dong, G. Shi, L. Li, and X. Li, “Accurate and lightweight
image super-resolution with model-guided deep unfolding network,”
IEEE Journal of Selected Topics in Signal Processing, 2020.

[19] J. Dong, S. Roth, and B. Schiele, “Deep wiener deconvolution: Wiener
meets deep learning for image deblurring,” Advances in Neural Infor-
mation Processing Systems, vol. 33, 2020.

[20] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in IEEE Conf. on Computer Vision
and Pattern Recognition Workshops, 2017, pp. 126–135.

[21] A. Ignatov, R. Timofte et al., “Pirm challenge on perceptual image
enhancement on smartphones: report,” in European Conf. on Computer
Vision (ECCV) Workshops, January 2019.

[22] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” 2012.

[23] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in International Conf. on curves and surfaces.
Springer, 2010, pp. 711–730.

[24] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang,
“Waterloo Exploration Database: New challenges for image quality
assessment models,” IEEE Trans. on Image Processing, vol. 26, pp.
1004–1016, Feb. 2017.

http://dx.doi.org/10.1109/TPAMI.2010.161

