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Abstract—In this paper, we address the multichannel blind
source extraction (BSE) of a single source in diffuse noise
environments. To solve this problem even faster than by fast
multichannel nonnegative matrix factorization (FastMNMF) and
its variant, we propose a BSE method called NoisyILRMA,
which is a modification of independent low-rank matrix analysis
(ILRMA) to account for diffuse noise. NoisyILRMA can achieve
considerably fast BSE by incorporating an algorithm developed
for independent vector extraction. In addition, to improve the
BSE performance of NoisyILRMA, we propose a mechanism to
switch the source model with ILRMA-like nonnegative matrix
factorization to a more expressive source model during opti-
mization. In the experiment, we show that NoisyILRMA runs
faster than a FastMNMF algorithm while maintaining the BSE
performance. We also confirm that the switching mechanism
improves the BSE performance of NoisyILRMA.

Index Terms—Multichannel blind source extraction, diffuse
noise environments, independent low-rank matrix factorization,
independent vector extraction, generalized eigenvalue problem

I. INTRODUCTION

Multichannel blind source separation (BSS) is a technique
used to separate multiple sources from multichannel observed
signals recorded by a microphone array without any prior
knowledge of, for example, the characteristics of sources
or spatial mixing systems. Among BSS, the technique used
to extract source signals from the background noise is par-
ticularly called multichannel blind source extraction (BSE).
BSE can be used as a front-end of sound signal processing
devices such as hearing aids and smart speakers. This study is
particularly focused on extracting one target source in diffuse
noise environments.

Independent low-rank matrix analysis (ILRMA) [1] is one
of the BSS methods that can separate point sources when the
number of sources is less than or equal to that of microphones.
ILRMA assumes independence between the sources and the
low rankness of the sources in the time-frequency domain
using nonnegative matrix factorization (NMF) [2]. In [1],
ILRMA was reported to experimentally achieve high and
stable performance. Although this method can separate point
sources accurately, it is impossible to remove diffuse noise in
the same direction as the target source [3].

This research was partly supported by JST Moonshot R&D Grant Number
JPMJMS2011 and JSPS KAKENHI Grant Number 19H01116.
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Fig. 1: Relationships between proposed and conventional
methods.

Multichannel NMF (MNMF) [4] is a multichannel extension
of NMF employing a full-rank spatial covariance matrix
(SCM) [5] for each source, which can model diffuse noise.
However, its computational complexity is high owing to the
large number of parameters for full-rank SCMs. To overcome
this problem, FastMNMF [6], [7] has been proposed. FastM-
NMF assumes that the SCMs for all sources are jointly diag-
onalizable [8], which allows a faster algorithm called iterative
projection (IP) [9] to be used for the estimation of the joint-
diagonalization matrix. By restricting the situation where some
sources are point sources, rank-constrained FastMNMF (RC-
FastMNMF) [7] has been proposed for efficient estimation.
This method focuses on the fact that the SCM of a point source
can be approximated by a rank-1 matrix and constrains the
SCMs corresponding to the point sources as rank-1 matrices,
enabling the efficient exploration of the solution space.

In this paper, we propose a method called NoisyILRMA,
which is ILRMA modified to account for diffuse noise.
When we use ILRMA under diffuse noise environments, the
separated signal corresponding to the target source contains
the target source and noise, while the other separated signals
contain noise only [10]. By explicitly modeling this property,
NoisyILRMA simultaneously estimates the separated target
signal and the residual noise component in it. We focus on
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the fact that the optimization problem of the demixing filters
has the same form as that in independent vector extraction
(IVE) [11]–[13], which is a method used to efficiently extract
the target sources in overdetermined cases (the number of
sources is less than that of microphones). For IVE, fast IVE
(FIVE) [13], [14], in which the demixing filters are optimized
by a fast algorithm, has been proposed. From these facts,
we can use the same fast algorithm as FIVE to optimize
the demixing filters in NoisyILRMA. In Sect. III-C, we
show that NoisyILRMA can be viewed as an accelerated
RC-FastMNMF used under the two-source assumption (for
single point source extraction under diffuse noise). We also
discuss OverILRMA [15], which is an extension of ILRMA
to overdetermined cases, as another closely related method in
Sect. III-C. Fig. 1 shows the relationships between NoisyIL-
RMA and other methods.

In addition, to further improve the BSE performance of
NoisyILRMA, we propose a source model switching mecha-
nism. In NoisyILRMA, the limited expressiveness of the NMF
model degrades the final BSE performance, although the NMF
model is useful for estimating the demixing filters. To solve
this problem, we focus on rank-constrained SCM estimation
(RCSCME) [16]. By utilizing the spatial information estimated
in the preprocessing BSS method such as ILRMA, RCSCME
efficiently estimates the residual spatial information and the
source models for the target source and noise. RCSCME
achieves high-performance BSE owing to the use of a more
expressive source model than the NMF model. We focus on
this fact and propose a source model switching mechanism in
which we first obtain the demixing filters accurately using the
NMF model and then fix the demixing filters and switch to
the same highly expressive source model as in RCSCME.

II. BACKGROUND

A. ILRMA [1]
Let xij ∈ CM be the short-time Fourier transformation

(STFT) of the multichannel observed signal, where i and j
are the indices of frequency bins and time frames, respectively,
and M is the number of microphones. When each source can
be assumed to be a point source and the window in STFT
is sufficiently longer than the reverberation, the following
mixing system xij = Aisij holds, where sij ∈ CN and
Ai = (ai1, . . . ,aiN ) are the source signals and mixing
matrix, respectively. Here, ain ∈ CM denotes the steering
vector, where n ∈ {1, . . . , N} is the index of the sources.
If N = M and Ai is invertible, the separated signal yij =
(yij1, . . . , yijM )T can be obtained as

yij = WH
i xij , (1)

where Wi = (AH
i )

−1 is the demixing matrix, and T and H

denote transpose and Hermitian transpose, respectively. We
assume the following complex Gaussian distribution for yijn:

yijn ∼ NC (0, rijn) , (2)

where rijn is the time-variant variance of source n, which is
modeled by NMF as rijn =

∑
k tiknvkjn. Here, tikn, vkjn ≥

0 are the NMF basis and activation, respectively, and k ∈
{1, . . . ,K} is the index of the basis.

When there exist a single point source and diffuse noise,
the separated signals satisfy the following property [10]: yijns

contains both the target source and noise, while the other M−1
separated signals contain noise only, where ns is the index of
the separated signal corresponding to the target source.

B. RC-FastMNMF [7]

In MNMF, we assume the following multivariate complex
Gaussian distribution for xij :

xij ∼ NC

(
0M ,

Ñ∑
ñ=1

rijñRiñ

)
, (3)

where 0M ∈ CM is a zero vector, Riñ ∈ CM×M denotes the
SCM of source ñ, and ñ ∈ {1, . . . , Ñ} is the index of sources.
Here, rijñ is also modeled by NMF as rijñ =

∑
k tikñvkjñ.

Note that Ñ is not necessarily equal to M , unlike in ILRMA.
In FastMNMF, we assume the following joint diagonalizability
for the SCMs of the Ñ sources to estimate them efficiently:

W̃H
i RiñW̃i = diag (λi1ñ, . . . , λiMñ) , (4)

where diag(q1 . . . , qM ) ∈ CM×M is the diagonal matrix
whose mth element is qm, W̃i = (w̃i,1, . . . , w̃iM ) ∈ CM×M

is the joint-diagonalization matrix, λimñ ≥ 0 is a diagonal
element of diagonalized SCMs, and m ∈ {1, . . . ,M} is the
index of the column of the joint-diagonalization matrix. In RC-
FastMNMF, from the fact that the SCM of a point source can
be approximated as a rank-1 matrix, we introduce the rank-1
constraint for the point source ñ′ by setting λimñ′ = 0 for
m ∈ {1, . . . ,M}\{ñ′}.

The model parameters of RC-FastMNMF ΘRC-FastMNMF =
{tikñ, vkjñ,W̃i, λimñ} are estimated in the maximum likeli-
hood sense. For W̃i, the IP algorithm [9] can be used [7],
where each W̃i column is alternately updated. A relationship
with the proposed method is discussed in Sect. III-C.

C. RCSCME [16]

Using the property of ILRMA under diffuse noise environ-
ments, we can accurately obtain the steering vector of the
target source a′

i ∈ CM and the rank-(M − 1) component
of the noise SCM R′(n)

i ∈ CM×M . Focusing on this fact,
RCSCME uses ILRMA as a preprocess and utilizes the spatial
information obtained in ILRMA for efficient estimation.

In RCSCME, we assume xij follows the following multi-
variate complex Gaussian distribution with the inverse-gamma
prior distribution:

xij | r(s)ij ∼ NC

(
0M , r

(s)
ij a′

i(a
′
i)

H + r
(n)
ij (R′(n)

i + µibib
H
i )
)
,

r
(s)
ij ∼ IG(α, β), (5)

where r
(s)
ij , r

(n)
ij > 0 are time-variant variances of the target

speech and noise, µi > 0 and bi ∈ CM are the weight
and direction vector used to represent the deficient rank-
1 component of the noise SCM, and α, β > 0 are the
shape and scale parameters of the inverse-gamma distribution,
respectively. Here, a′

i = (W′H
i )

−1ens
holds, where W′

i is the
demixing matrix estimated in ILRMA and en is the unit vector
whose nth element is one. We calculate R′(n)

i as R′(n)
i =



∑
j x

′(n)
ij (x′(n)

ij )H/J , where x′(n)
ij = xij − a′

i(W
′
iens

)Hxij

holds, and J is the number of time frames. bi is a constant vec-
tor that is linearly independent of the column vectors of R′(n)

i .
The inverse-gamma prior distribution in (5) is introduced for
the sparsity of the target source in the time-frequency domain.
Note that r(s)ij and r

(n)
ij are unconstrained parameters with the

prior distribution in (5), which is more expressive than the
NMF model. RCSCME can achieve high BSE performance
owing to the more expressive source model.

III. PROPOSED METHODS

A. Motivation
In this section, we propose the diffuse-noise-aware ILRMA,

which we call NoisyILRMA, for single-source extraction.
When we use ILRMA in diffuse noise environments, the
following properties hold [10]:

• yijns
contains both speech and noise.

• The other M − 1 separated signals contain noise only.
By explicitly modeling these properties, NoisyILRMA simul-
taneously estimates the demixing matrix Wi and the noise
component in the separated target signal yijns

. In NoisyIL-
RMA, we also assume that the noise component in yijns has
time synchronization with the other M − 1 separated signals
to enable a reasonable estimation. We can suppress the noise
component in yijns by multichannel Wiener filter (MWF)
using the estimated variances. As an additional advantage of
such modeling in NoisyILRMA, we show that the optimization
problem of the demixing matrix has the same form as that in
IVE [11]–[13], which enables us to use the same considerably
fast algorithm in FIVE [13], [14].

In addition, to further improve the BSE performance of
NoisyILRMA, we propose a source model switching mecha-
nism. The NMF model in NoisyILRMA is useful for estimat-
ing the demixing matrix Wi because it clusters the frequency
bins corresponding to the same source. However, the NMF
model may degrade the final BSE performance when using
the MWF owing to its limited expressiveness. Inspired by
RCSCME, in the proposed switching mechanism, we first
obtain Wi accurately using the NMF model and then switch
to the same highly expressive source model as in RCSCME.

B. Method
In NoisyILRMA, we introduce the above-mentioned prop-

erties of the separated signal yijn and the assumption that the
noise component in yijns has time synchronization with the
other separated signals as follows:

yij1 ∼ NC

(
0, r

(s)
ij + r

(n)
ij λ

(n)
i

)
, (6)

yijn ∼ NC

(
0, r

(n)
ij

)
(n ∈ {2, . . . ,M}), (7)

where λ
(n)
i > 0 denotes the weight of the noise component in

yij1, r(l)ij is modeled by NMF as r
(l)
ij =

∑
k t

(l)
ik v

(l)
kj , l ∈ {s,n}

is the label used to distinguish the target source and noise, and
t
(l)
ik , v(l)kj ≥ 0 are the NMF basis and activation, respectively.

Note that we assume ns = 1 without loss of generality and
yij2, . . . , yijM to have the same variance by using the scale
arbitrariness of win.

In NoisyILRMA, the cost function is defined as the negative
log-likelihood, which is obtained from (1), (6), and (7) as

L(Θ) =
∑
i,j

[
−2 log |detWi|

+ log (r
(s)
ij + r

(n)
ij λ

(n)
i ) + (M − 1) log r

(n)
ij

+
|yij1|2

r
(s)
ij + r

(n)
ij λ

(n)
i

+

∑M
n=2 |yijn|2

r
(n)
ij

]
+ const., (8)

where Θ = {t(l)ik , v
(l)
kj ,Wi, λ

(n)
i } is the set of model parameters

and const. includes the terms independent of Θ. Wi and the
other parameters {t(l)ik , v

(l)
kj , λ

(n)
i } are alternately updated to

minimize (8). To derive the update rule for Wi, we transform
the cost function (8) with respect to Wi = (w

(s)
i ,W

(n)
i ) as

L({Wi}) = J
∑
i

[
−2 log |detWi|+ (w

(s)
i )HG

(s)
i w

(s)
i

+Tr
(
(W

(n)
i )HG

(n)
i W

(n)
i

)]
+ const., (9)

where we define G
(s)
i =

∑
j xijx

H
ij/(r

(s)
ij + r

(n)
ij λ

(n)
i )/J

and G
(n)
i =

∑
j xijx

H
ij/r

(n)
ij /J , and const. includes the

terms independent of Wi. Since this cost function (9) is the
same form as that for IVE [11]–[13], the fast algorithm in
FIVE [13], [14] can be used to optimize Wi. By transforming
the condition that the Wirtinger derivative of (9) with respect
to Wi equals zero, we can obtain the following equations:

(w
(s)
i )HG

(s)
i w

(s)
i = 1, (10)

(W
(n)
i )HG

(s)
i w

(s)
i = 0M−1, (11)

(w
(s)
i )HG

(n)
i W

(n)
i = 0H

M−1, (12)

(W
(n)
i )HG

(n)
i W

(n)
i = EM−1, (13)

where EM−1 ∈ C(M−1)×(M−1) is the identity matrix. In [13],
the update rule of w(s)

i is derived as

w
(s)
i ←

hi1√
hH
i1G

(s)
i hi1

, (14)

where hi1 ∈ CM is the generalized eigenvector with the
largest generalized eigenvalue in the following generalized
eigenvalue problem:

G
(n)
i vi = κi G

(s)
i vi. (15)

Here, κi > 0 and vi ∈ CM are the generalized eigenvalue
and the generalized eigenvector, respectively. We can update
W

(n)
i to satisfy (11)–(13) as follows:

W
(n)
i ←

 hi2√
hH
i2G

(n)
i hi2

, . . . ,
hiM√

hH
iMG

(n)
i hiM

 , (16)

where hi2, . . . ,hiM ∈ CM are the other generalized eigen-
vectors of (15). By using (14) and (16), we can update all
Wi columns simultaneously.

We can derive the update rules for the other parameters
t
(l)
ik , v(l)kj , and λ

(n)
i in the same manner as in FastMNMF [7]



by using the majorization-minimization (MM) algorithm [17]:

t
(s)
ik ← t

(s)
ik

√√√√√√
∑

j
|yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2

v
(s)
kj∑

j
1

r
(s)
ij +r

(n)
ij λ

(n)
i

v
(s)
kj

, (17)

v
(s)
kj ← v

(s)
kj

√√√√√√
∑

i
|yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2

t
(s)
ik∑

i
1

r
(s)
ij +r

(n)
ij λ

(n)
i

t
(s)
ik

, (18)

t
(n)
ik ← t

(n)
ik

√√√√√√√
∑

j

(
λi|yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2

+
∑M

n=2 |yijn|2

(r
(n)
ij )2

)
v
(n)
kj∑

j

(
λi

r
(s)
ij +r

(n)
ij λ

(n)
i

+ M−1

r
(n)
ij

)
v
(n)
kj

,

(19)

v
(n)
kj ← v

(n)
kj

√√√√√√√
∑

i

(
λi|yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2

+
∑M

n=2 |yijn|2

(r
(n)
ij )2

)
t
(n)
ik∑

i

(
λi

r
(s)
ij +r

(n)
ij λ

(n)
i

+ M−1

r
(n)
ij

)
t
(n)
ik

,

(20)

λ
(n)
i ← λ

(n)
i

√√√√√√√
∑

j

r
(n)
ij |yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2∑

j

r
(n)
ij

r
(s)
ij +r

(n)
ij λ

(n)
i

. (21)

We obtain the extracted target source signal ŝij by using
the following MWF [8]:

ŝij = a
(s)
i︸ ︷︷ ︸

projection back [18]

r
(s)
ij

r
(s)
ij +r

(n)
ij λ

(n)
i︸ ︷︷ ︸

postfiltering

(w
(s)
i )Hxij︸ ︷︷ ︸

linear filtering

, (22)

where a
(s)
i = (WH

i )
−1e1.

C. Relationship with other methods

In this section, we describe the relationship between Noisy-
ILRMA and other methods. When we assume the two-
source situation (the target source and noise), RC-FastMNMF
becomes equivalent to NoisyILRMA in terms of modeling.
From (3) and (4), ỹijm ∼ NC

(
0,
∑Ñ

ñ=1 rijñλimñ

)
holds,

where ỹij = (ỹij1, . . . , ỹijM )T = W̃H
i xij is the decorrelated

signal. By substituting Ñ = 2, λi11 = 1, λim1 = 0 (m ∈
{2, . . . ,M}), λi12 = λ

(n)
i , and λim2 = 1 (m ∈ {2, . . . ,M}),

we can confirm that ỹij satisfies (6)–(7) when we assume
W̃i = Wi. One major advantage of NoisyILRMA over RC-
FastMNMF is that by setting Ñ = 2, we can use a fast
algorithm in which all Wi columns are updated simultane-
ously, whereas each W̃i column is alternately updated in
RC-FastMNMF. This makes NoisyILRMA considerably faster
than RC-FastMNMF.

OverILRMA [15] is a method closely related to NoisyIL-
RMA. The main difference is that r

(n)
ij is a time-invariant

parameter in OverILRMA, while r
(n)
ij is modeled as a time-

variant parameter using the NMF model in NoisyILRMA.
There are two advantages of time-variant modeling. Firstly, we

can model time-variant diffuse noise. Secondly, the noise com-
ponent in yij1 can be estimated using the time synchronization
with the other separated signals in time-variant modeling,
whereas it is estimated independently of the other separated
signals in time-invariant modeling. Because of these advan-
tages of time-variant modeling, NoisyILRMA is expected to
achieve higher performance than OverILRMA.

D. Source model switching in NoisyILRMA

In this section, we propose a source model switching mech-
anism. In this method, we first use NoisyILRMA for several
iterations to obtain Wi accurately by the NMF model. After
that, we fix Wi and switch to the same source model as in
RCSCME, i.e., r(s)ij and r

(n)
ij are the unconstrained parameters

with the inverse-gamma prior distribution in (5). This enables a
finer estimation of r(l)ij and we expect higher BSE performance
using MWF (22).

We can derive the update rules based on maximum a poste-
riori estimation in a manner similar to that in RCSCME [16]
by using the MM algorithm as follows (the update rule for
λ
(n)
i is the same form as (21)):

r
(s)
ij ← r

(s)
ij

√√√√√ |yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2

+ β

(r
(s)
ij )2

1

r
(s)
ij +r

(n)
ij λ

(n)
i

+ α+1

r
(s)
ij

, (23)

r
(n)
ij ← r

(n)
ij

√√√√√√
λi|yij1|2

(r
(s)
ij +r

(n)
ij λ

(n)
i )2

+
∑M

n=2 |yijn|2

(r
(n)
ij )2

λi

r
(s)
ij +r

(n)
ij λ

(n)
i

+ M−1

r
(n)
ij

. (24)

IV. EXPERIMENTAL ANALYSIS

A. Experimental conditions

We conducted a BSE experiment using simulated mixtures
of a target source and diffuse noise in M = 4. For the target
source, we used four different directions: 0, 10, 20, and 30
degrees clockwise from the normal to the microphone array.
As the target source signals, we used six speech signals from
JNAS [19]. For diffuse noise, we used four types of noise:
babble, cafe, station, and traffic. We simulated diffuse noise by
different signals arriving from 19 directions. The babble noise
was prepared from the speech of 19 speakers in JNAS. For
cafe, station, and traffic noises, we obtained noise signals from
the DEMAND [20] dataset and split them into 19 signals. Each
signal was convoluted with the impulse response shown in
Fig. 2. The signal length was 8.8 s and the sampling frequency
was 16 kHz. The input SNR was set to 0 dB. For STFT, a 64-
ms-long Hamming window was used, and the frameshift was
32 ms. The source-to-distortion ratio (SDR) [21] improvement
was used to evaluate the BSE performance.

The compared methods were RC-FastMNMF [7], Over-
ILRMA [15], RCSCME [16], proposed NoisyILRMA, and
proposed NoisyILRMA with switching. In RCSCME, we
attempted 20 and 50 iterations for the preprocessing IL-
RMA, which are labeled “ILRMA 20” and “ILRMA 50”,
respectively. For all the methods using the NMF model, the
numbers of NMF bases for the target sound and noise were
set to three. All NMF variables were initialized by uniform
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Fig. 3: (a) SDR improvement behaviors with respect to runtime
averaged over 960 trials. (b) Enlarged view of (a).

random numbers on (0,1) intervals. Wi was initialized as
wim = uim/

√
dim, where dim > 0 and uim ∈ CM are the

eigenvalue and eigenvector of
∑

j xijx
H
ij/J , respectively, and

di1 is the largest eigenvalue. W̃i was initialized in the same
manner as Wi. λimñ, λ(n)

i , and µi were initialized as one. In
RCSCME, bi was fixed to a′

i to achieve good performance.
In OverILRMA and NoisyILRMA, the proportion between
the number of Wi updates and the others was experimentally
determined to be 1:10. In NoisyILRMA with switching, the
number of iterations before switching was experimentally
determined to be four. All methods were implemented in
MATLAB (R2022a) and the calculation was performed on
Intel Core i9-12900K.

B. Experimental results

SDR improvement versus runtime is shown in Fig. 3. The
runtime and SDR improvement were averaged over 960 trials
(10 random initializations, four target speech directions, six
speech signals, and four noise types). Fig. 3 shows that
the proposed NoisyILRMA was the fastest among all the
methods while maintaining the convergence performance of
RC-FastMNMF. In addition, NoisyILRMA achieved approxi-
mately 1 dB higher performance than OverILRMA. This may
be due to the time-variant noise modeling in NoisyLRMA.
Fig. 3 also shows that RCSCME achieves good maximum
performance with 50 ILRMA iterations and that NoisyILRMA
with switching achieved comparable performance about 10
times faster.

V. CONCLUSION

In this paper, we proposed NoisyILRMA, a diffuse-noise-
aware ILRMA, which can be optimized with the same fast
algorithm as proposed in FIVE. We also proposed a switching
mechanism of NoisyILRMA to further improve the BSE per-
formance. The experimental result showed that NoisyILRMA
ran faster than the conventional methods while maintaining
the BSE performance. We also confirmed that the switching
mechanism improves the BSE performance of NoisyILRMA to
become comparable to that of RCSCME at an approximately
10 times faster speed.
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