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Abstract—Compressive sensing (CS) techniques can be used
to reduce the pilot overhead, and to improve the performance
of channel estimation in massive multiple-input multiple-output
(MIMO) systems. Most existing methods adopt the DFT matrix
as a basis, which leads to direction mismatch and energy leakage
problem in practice. However, the properties of geometry-based
stochastic channel model (GSCM) are usually overlooked, but can
be exploited to improve the performance of channel estimation. In
this paper, a multi-resolution discrimination dictionary learning
(MRDDL) method is proposed for downlink sparse channel es-
timation in frequency-division duplexing (FDD) MIMO systems.
By taking into consideration that far scatterers in a specific cell
are fixed at a certain position in the space and multipath angle of
arrival (AOA) from far scatterers is concentrated in a fixed range,
we design a specific dictionary for each far scatterer to reduce
the redundant atoms. Simulations are conducted to validate the
robustness and effectiveness of the MRDDL method over existing
channel estimation methods.

Keywords-massive MIMO, channel estimation, multi-resolution
discrimination dictionary learning, FDD, compressive sensing.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has be-
come a key technology in next-generation wireless systems
[1]. Accurate acquisition of channel state information (CSI)
is essential for large-scale MIMO, which can be utilized
for beamforming and precoding. For conventional channel
estimation technologies, such as least square (LS), the number
of downlink training pilots is directly proportional to the
number of base station (BS) antennas, which leads to large
overhead and sometimes the pilot contamination problem in
large-scale MIMO systems. In a time-division duplex (TDD)
massive MIMO system, it is easier to obtain the CSI of the
uplink channel on the BS side due to the limited number of
users, and downlink CSI can be obtained by exploiting the
uplink/downlink channel reciprocity. However, the full channel
reciprocity is not hold in a frequency-division duplex (FDD)
system [2], and the large antenna array makes it challenging
to obtain the downlink CSI in FDD massive MIMO systems.

Compressive sensing (CS) techniques have been widely
used in wireless communication systems in recent years [3].
They are based on the premise that the sparse vector can be
recovered robustly with a number of measurement vectors,
which is only proportional to the number of nonzero entries
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Figure 1. Principle of the GSCM.

in a specific domain. It has been demonstrated that the massive
MIMO channel has the sparse characteristic in the virtual
angular domain, so that the techniques based on CS can be
used to estimate sparse channel accurately while alleviating
the downlink training pilots overhead. Most existing methods
based on CS techniques [4-6] only use the DFT dictionary,
which can be considered as uniformly fixed sampling over the
angular domain to transform the MIMO channel into a sparse
channel vector in the virtual angular domain. Unfortunately,
the DFT dictionary matrix may have the problem that the
actual azimuth angle of arrival (AOA) or azimuth angle of
departure (AOD) does not match the atomic direction of the
dictionary, which leads to serious energy leakage. A simple
solution to avoid the mismatch problem is to increase the DFT
size. To futher improve the performance of channel estimation,
the authors in [7] first use dictionary learning algorithm to
learn a specific dictionary as a basis to represent massive
MIMO channel. Other scholars have further improved the
performance of dictionary learning by considering additional
conditions, such as partitioning the cell into several sectors in
advance [8] and block-structured dictionary learning [9].

The dictionary learning methods [7-9] usually utilize the
Geometry-Based Stochastic Channel Model (GSCM) [10], as
illustrated in Fig 1. This type of channel has been widely used
in wireless communications including FDD massive MIMO
systems. However, the properties of GSCM have not been fully
exploited in existing dictionary learning methods. According
to [10], there exist a few far scatterers and local scatterers
in the communication system. Those far scatterers such as
high-rise buildings and mountains, are far away from both the
mobile station (MS) and BS. The position of the far scatterers
can be deemed to be fixed in space, which means the range of
AOA from far scatterers at the MS is approximately invariant
though the position of the MS changes.

To further exploit the above-mentioned properties of the
GSCM, we design a specific dictionary for each far scatterer
and propose a new dictionary learning method named multi-



resolution discrimination dictionary learning (MRDDL) to im-
prove the performance of channel estimation. In addition, we
propose an effective method to solve the MRDDL algorithm
and further reveal the physical meaning of dictionary learning
for channel estimation.

Notations used in this paper are as follows. Uppercase
and lowercase boldface letters are used to denote matrices
and vectors, respectively. ||z|lo, |||, ||z||2, ||z||F are used
to represent {y-norm, ¢1-norm, ¢s-norm and Frobenius norm,
respectively. We use (-)T to denote the transpose and a; to
denote the j-th column of A. The notation C denotes the
complex set and diag(a) is a diagonal matrix containing the
elements of a on the diagonal.

II. SYSTEM MODEL
A. Signal Model

We consider a single-cell FDD massive MIMO system
where the BS employs N antennas and each MS has a
single antenna. The downlink channel is a narrowband block
fading channel, there are N. dominant scattering clusters for
each channel response and N, is the number of propagation
subpaths in each cluster. Futhermore, we define the total
number of far scattering clusters in the geographic space as
Ny. Thus, the downlink channel response can be modeled as

Nc Ns
h= Zzac,sa (ec,s) (1)

c=1 s=1
where «. ; denotes the complex gain of the s-th subpath in the
c-th scattering cluster for the downlink, a (6. ) is the array
response, and 6. . is the corresponding AOD for the downlink
transmission. Denote the wavelength of downlink as b, the
space between antennas is d = b/2 and the array response of
a uniform linear array (ULA) is denoted as

a(gc s) = |:]., ejzﬂ% Siﬂ(‘gc,s)’ . ej2ﬂ'% Sin(ec,s)-(l\f—l)} T @)
The received signal at mobile user (MU) is given by
Yy = Ah +n (3)

where h € CN*1 denotes the downlink channel vector, A €
CT*N is the matrix corresponding to the pilots transmitted
during the T training period, and n € CT*1 is the Gaussian
noise vector during the signal transmission. The downlink
channel can be estimated at each MU based on the received
signal and corresponding training pilots.

B. CS-Based Donwlink Channel Estimation

Thanks to the sparsity in the virtual angular domain for
MIMO channel, the channel can be estimated with much
smaller measurements (7' < N) using the CS theory [4-6].
This process can be represented as

y=Ah+n=ADx+n (@)

where x is a sparse vector in the virtual angular domain.
The sparse basis D can be a DFT matrix, an overcomplete
DFT matrix or a learning dictionary. If we use 7 to represent

the modeling error, the channel estimation problem can be
formulated as

H;in||x||0, st.  |ly —ADx|, <7 5)

The optimization problem (5) can be solved by sparse
approximation algorithms efficiently [11].

III. MULTI-RESOLUTION DISCRIMINATION DICTIONARY
LEARNING ALGORITHM

A. Overview of Existing Dictionary Learning Algorithms

The dictionary learning methods aim to learn a specific
dictionary to represent channel sparsely. In [7], the dictionary
learning-based channel model (DLCM) is proposed as

1 M
]511)1331 M Z: ||Xm||o (6)
m=1
S.t. I, — DXmHQ <n,Vm

where M is the number of training channel samples, the
authors in [7-9] rotate the ODFT atoms to match the AOD
through the dictionary learning method. In [8], a specific
cell is partitioned into several sectors and a discriminative
dictionary learning method is proposed to learn a specific
sub-dictionary for each sector. However, the number of sub-
dictionaries related to sectors in a cell is large, and it is
uncertain which sector in the cell a specific user comes from.
In addition, it is complex to determine which sector-related
sub-dictionary to use for downlink channel estimation. There
still exist redundant atoms for these methods and the properties
of GSCM have not been fully exploited.

B. The Proposed Algorithm-MRDDL

As discussed in Section I, the multipath AOA from far
scatterers is concentrated in a fixed range since far scatterers
are fixed at a certain position in space for a specific cell. Thus,
we design a specific dictionary for each far scatterer to reduce
the redundant atoms in the dictionary.

We propose a MRDDL-based framework for downlink
channel estimation in FDD massive MIMO systems. which
learns a low-resolution dictionary and a high-resolution dis-
criminative dictionary for each far scatterer with good rep-
resentation ability. The architecture of proposed dictionary
is shown in Fig 2. Dy € CN*F0 is the low-resolution
dictionary, which provides a sampling grid over the angu-
lar domain [-Z,Z]. D; € CV*FP (i = 1,2,--- Ny)
is a high-resolution dictionary with sampling grid over the
angular domain [¢; — A, ¢; + Ad]. (¢; is the angle of
main lobe of AOD for the i-th far scatterer and A¢ is
the angular spread). The proposed dictionary is formed as
D = [Dy,Dy,D;...,Dy,] € CVN*P (P = Y1V P,). The
dictionary D and the sparse representation coefficients can be
optimized by

M
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Figure 2. Structure of the proposed dictionary.

The first term constitutes the overall representation ability
of the learned dictionary, where H € CV*M is the downlink
training channel samples in a specific cell, and X € CF*M jg
a sparse channel coefficient vector in the virtual domain. The
last term adds the sparse constraint on the channel coefficient
vector, and \ represents the positive regularization parameters.
The second term makes up the discriminative ability so that
the atoms of each high-resolution dictionary are matched
with the corresponding AOA from the far scatterer, where
W,, = diag(w,,), w,,, € N'*P is a binary vector, the j-th
column of w,, is one if the j-th column of D belongs to the
corresponding scatterer index set 2,,,, which denotes the local
scatterer and N, — 1 far scatterers index for the m-th channel
sampling and Q,,, C {0,1,2,---, Ny}. The third term sets the
coefficients which are not associated with corresponding far
scatterers to be zero, W ,,=diag(w,,,) and w,, is also a binary
vector whose element is opposite to w;,.

C. Efficient Solutions for Optimization Problems

The dictionary update process can be divided into two
stages, i.e., we can update sparse coefficients X while keeping
the dictionary D fixed and then update D while X remains
fixed [12]. The process may be repeated many times until
convergence. The original problem (7) is equivalent to :

argmin  Jg(D,X) = Fa(D,X) + A|X]: ®)
DX

M
Fia(D,X) = [H - DX+ > [l — DW,, 13 +
m=1
—~ 2
oW
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1) MRDDL Sparse Coefficient Update (MRDDL-X):
When D is fixed, X is updated by solving

X =argmin Ju(D,X) =Fu((D,X)+ X |X|; (10)
X

The problem (10) can be solved by the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) [13]. First, we
should calculate the gradient of Fgy(D, X).

We define D" = [T (Do), 7 (D1)---T (Dn;)] and

D, n e Q,
T(Dn): 0 ndQ

Similarly, we define D% = [G (Dyg),G (D1)---G (Dn;,)]
and

(1)

0 n e Q,

nd (12)

g(Dn) = {

OFu(D, X) - T o
S =D'DX-D"H+ Y [(D%) D¥x,—

m=1
_ T -
(D%)" by, + (D) DPx,,
(13)
We can use FISTA [13] to update X once VFy(D,X)
has been calculated, and the Lipschitz coefficient L of

VIu (D, X) should be calculated to control the iteration step.
The algorithm is summarized in Algorithm 1.

Algorithm 1 MRDDL Sparse Coefficients Update by FISTA

Input: Channel Samples H, Scatter Index W,,, Dictionary
D, Regularization parameter A\, Sparse Coefficients X.
Output: Sparse Coefficients X.
1: function X = MRDDL_XH, W,,, D, A\, X)
2: Calculate:
A=DTD

B™ = (DQm)T DS

M
1
L = Amaz(A)+Amaz {M > (BT +C™) | +6A

i=1

3: Initialize: P; = Qo = X, t1=1, k=1
4: while not converge and k < k4, do
5: Calculate gradient:
G =AX-DTH
M
+ Z[(Bm+ Cm)Xm— (Dﬂm)Thm]

i=1

6: Qr = Sx/L (Px — G/L) (S4() is the soft thresh-

olding function. S, (z) = sgn(x) (|x| — ay)).

7: tk+1=(1 +/1+ 4t§) /2

8: kPk+}€: ?k + 5 (Qr — Qi)
9: =K+
10: end while

11: end function

2) MRDDL Dictionary Update (MRDDL-D):
When X is fixed, D can be updated by solving

D =argmin Fg(D,X) (14)
D

The dictionary update problem (14) is equivalent to

D =arg rr}l)in {—2 trace (EDT> + trace (FDTD)} (15)

where E = H(X + M(X))”, F = XXT + M(X)M(X)T
+N(X)N(X)T. Refer to Appendix for the proof. We can
use Online Dictionary Learning (ODL) [14] to update D
efficiently.

In order to speed up convergence, we need to initialize D
by setting the low-resolution dictionary to the ODFT matrix
and each high-resolution dictionary to the DFT matrix. The
algorithm converges faster when we modify sparse coefficients



X via equation (16) after updating D. We summarize the whole
process in Algorithm 2.

Algorithm 2 MRDDL Algorithm

Input: Channel Samples H, Scatter Index W,,,, Regulariza-
tion parameter .
Output: Dictionary D.
1: function D = MRDDL(H, W,,,, \)
2 Initialization D, and:

X = argmin |[H — DX||2 + A || X]|,
X

3: while not converge do
: Update X by Algorithm 1.
5: Update D by ODL:

E=HX+MX)T
F = XX" + MX)MX)T + N(X)N(X)T
_ i T T
D =arg n}gn{ 2trace (ED ) + trace (FD D)}
6: Modify Sparse Coefficients:

X = argmin [|H — DX||7 + A || X]|; (16)
X

7: end while
8: end function

Once obtaining the dictionary D through the MRDDL algo-
rithm, the sparse channel coefficient vector can be calculated
by
ly — ADx][[z <7 a7

X =min|x|; st
xX

~ SO ~ T ~ .

where X = [Xo,X1,...Xn,;]" € CP*!, and Xy, is the coef-

ficient vector related to sub-dictionary Dy (K = 0,1,... Ny).

The estimated channel is obtained as h = DX.

IV. EXPERIMENTAL RESULTS

In the simulation, the BS employs 100 antennas with ULA
and each MS has a single antenna, the cell specific scattering
clusters are generated following the principle of GSCM [10].
Each scatter has 20 subpaths with 4 angular spread. Far scatter
clusters are generated with radius 1500m and ¢ € [~7, 7], and
then kept constant in the whole process of dictionary learning
and channel estimation. Each channel response consists of
multipath AOA from three far scatterers which are closest
to MS and one local scatterer which is generated randomly
according to the location of MS. The other related channel
parameters, such as delay spread, angular spread, and path
power are generated according to the 3GPP standard [15].

The recovered sparse channel coefficient vector by the
learning dictionary is depicted in Fig 3. The nonzero entries of
coefficients T are only located at the corresponding position of
sub-dictionary {Do, D2, D4, D5}, which is consistent with the
scatterer index set Q = {0, 2,4, 5}. It also shows the discrim-
inative and representative ability of the learning dictionary.

To evaluate the performance of our proposed model
MRDDL, we calculate the performance of downlink channel
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100 200 300 400 500 600 700 800 900 1000
Atom index

Figure 3. Recovered sparse channel coefficient vector for k-th user

estimation based on CS techniques by applying different spar-
sifying matrices. We compare our algorithm to 100x 100 DFT
basis, 100x 400 ODFT basis, and dictionary learning algo-
rithm [7]. We generate training pilots A as i.i.d. CN (0, p/N),
so that E||A||2 = pT. We adopt normalized mean square
error (NMSE) as the performance metric, which is defined as
NMSE = E { || — hj3/|h[3 }.

Fig 4 shows the NMSE performance with respect to the
number of downlink training pilots. Our proposed algorithm
MRDDL achieves superior performance over the existing
algorithms. The required training pilots of MRDDL are much
less than the DFT basis, ODFT basis and DLCM. To achieve
the same NMSE performance, MRDDL saves nearly 20% pilot
overhead in comparison to DLCM. The figure also shows that
the performance of the four algorithms has improved with the
increase in SNR.
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Figure 4. NMSE comparison of different sparsifying matrices for downlink
channel estimation in FDD massive estimation



V. CONCLUSIONS

In this paper, we developed an MRDDL algorithm based
downlink channel estimation in FDD massive MIMO systems.
By taking into consideration that far scatterers in a specific
cell are fixed at a certain position in space and the range
of multipath AOA from far scatterers remains unchanged, we
design a specific dictionary for each far scatterer to reduce the
redundant atoms. Moreover, we evaluated the performance of
channel estimation based on the learned dictionary. Simula-
tion results demonstrated the robustness and effectiveness of
our algorithm compared to the existing CS-based algorithm.
Consequently, our model can be expanded to a joint uplink/-
downlink channel estimation frame and this MRDDL model
can be used as an efficient framework in future massive MIMO
systems.

APPENDIX

Fu (D, X) can be rewritten as

M N 2
1= DX+ 3 I, = DWoxa 3 + [0, |
m=1
M N N
= trace [ [XXT + Z [memxflwﬁ + memxﬁwm”
=1

DTD‘| — 2trace + constant

M
HXT + Z hmxﬁwm] DT
i=1
= —2trace(EDT) + trace(FDTD) + constant

where we have defined

M
E=HX"+> h,x W,
i=1

=HX" + [hl (x?1>T...h

-H {XT + {(x?l)T . (X%,L)T] }

=H(X + M(X)"

3
%
3
)

M
F=XXT+Y" [memxgwﬁ n vwvmxmxﬁvwvm]
=1

=3 [ () () ) )] +

() ()" () ()

=XXT + MX)MX)T + N(X)NV(X)T

the definition of x2m, x®m is similar to D= D% as

m m m

expressed in equations (11), (12).
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