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Abstract—Over the last few years, massive amounts
of satellite multispectral and hyperspectral images cov-
ering the Earth’s surface have been made publicly
available for scientific purpose, for example through
the European Copernicus project. Simultaneously, the
development of self-supervised learning (SSL) meth-
ods has sparked great interest in the remote sensing
community, enabling to learn latent representations
from unlabeled data to help treating downstream tasks
for which there is few annotated examples, such as
interpolation, forecasting or unmixing. Following this
line, we train a deep learning model inspired from
the Koopman operator theory to model long-term re-
flectance dynamics in an unsupervised way. We show
that this trained model, being differentiable, can be
used as a prior for data assimilation in a straightforward
way. Our datasets, which are composed of Sentinel-2
multispectral image time series, are publicly released
with several levels of treatment.

Index Terms—Self-supervised learning, Sentinel-2,
satellite image time series, Koopman operator, Data
assimilation

I. Introduction
Longstanding problems in satellite image time series

processing include change detection [1], content classifica-
tion [2], semantic segmentation [3] and spectral unmixing
[4]. In this paper, we approach these issues in a holistic
way, in a self-supervised learning (SSL) context. Indeed,
we design a machine learning model first trained on a
pretext task without using any annotations, and in fine
use its learnt latent representation to handle downstream
tasks, possibly with some labels. Our pretext task is to
predict the long-term reflectance of a pixel using a given
initial condition. We aim at learning discrete dynamical
systems written in a generic way as

xt+1 = f(xt; θ) (1)

This work was supported by Agence Nationale de la Recherche
under grant ANR-21-CE48-0005 LEMONADE.

where x is an observed time series and θ represents
underlying parameters. While SSL has been extensively
studied for remote sensing [5], to our knowledge, our work
is the first to use temporal prediction as a pretext task.
Our resulting model is well aware of the reflectance dy-
namics and can serve multiple time-related purposes, like
interpolation, denoising or forecasting. Its differentiability
and small number of parameters makes it more versatile
than many model-driven priors for downstream tasks that
can be formulated as optimization problems. In spirit, our
learning approach is related to recent advances in natural
language processing, e.g. [6], where a large language model
is simply trained to predict the data and can then be asked
to perform a variety of tasks.

Our contributions include: (1) we adapt a neural ar-
chitecture that we previously introduced in [7], which
learns the behavior of dynamical systems from observa-
tion data, to real-world satellite image time series and
study tools to leverage the spatial structure of these data,
(2) we show how to use such a trained model for data
assimilation, in settings with sparse and irregular avail-
able data, showing promising potential to design efficient
gap-filling algorithms for such remote sensing datasets,
(3) we collect, clean and interpolate two long Sentinel-2
time series, which we publicly share (https://github.com/
anthony-frion/Sentinel2TS) to make it easier for the in-
terested community to work on similar tasks and compare
their results to ours.

II. Our methods
Our approach to learning time series dynamics is based

on the Koopman operator theory [8]. In short, this theory
states that any given dynamical system can be described
by a linear operator which is applied to observation func-
tions of the system. However, this operator, which is called
the Koopman operator, is generally infinite dimensional.
We refer the reader to [9] for a recent review on this
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theory. Our method follows a line opened by [10] which
aims at finding a Koopman Invariant Subspace, i.e. a set
of observation functions on which the restriction of the
Koopman operator is finite-dimensional, and which gives
a good view of the general dynamical system.

We use the neural Koopman architecture from [7],
which we represent graphically in Figure 1. In short,
this architecture has 2 components: a deep autoencoder
(φ, ψ) and a Koopman matrix K. The matrix K, whose
entries are trainable parameters, multiplies vectors from
the latent space obtained by training the encoder φ and
the decoder ψ. It has the effect of advancing time. In terms
of equations, this could be written as

ψ(Kτφ(x(t))) = x(t+ τ) (2)

for a given variable x of time evaluated at a specific time t
and advanced by a time τ . Note that a time of 1 classically
corresponds to a time step from the time series which is
considered (assuming it is regularly sampled).

In the case of satellite image time series, as a first
approach, we treat pixels independently from one another.
Thus, given a time series of T images each containing
N = H ×W pixels we denote our state variable as xi,t,
where 1 ≤ i ≤ N is the spatial index and 1 ≤ t ≤ T is the
temporal index.

Note that, in our case, xi,t is not a scalar value but a
multispectral pixel, i.e. a L-dimensional vector, where each
of the L = 10 dimensions corresponds to the reflectance
measured for one of the Sentinel-2 spectral bands. We
augment the observation space with the local discrete
temporal derivatives of x, which means that we work on
data y defined by

yi,t =
(
xi,t+1 xi,t+1 − xi,t

)T
. (3)

This is equivalent to the knowledge of the last 2 states of x,
and it can therefore be motivated by Takens’ embedding
theorem [11], which roughly states that the state space
gets more predictable when augmented with lagged states.
Intuitively, it seems much easier to estimate the next
step of x when one knows both the current state and its
derivative. y is now of dimension 2L = 20: 10 dimensions
for the covered spectral bands and 10 for their derivatives,
as shown on Figure 1.

As in [7], we train a prediction model in two stages:
first we train it to short-term prediction of the dynamics,
i.e. up to 5 time steps ahead, and then to long-term
prediction, i.e. up to 100 steps ahead. It is crucial to obtain
a model that is able to make good predictions over several
years, yet the long-term optimisation problem is highly
nonconvex, usually leading to a poor local minimum.
Therefore, the easier short-term prediction task provides a
warm-start initialization, avoiding bad local minima. Such
a procedure is related to curriculum learning [12], which
we believe to be crucial when learning difficult physics-
related tasks (see [13] for a recent survey).

Fig. 1. Schematic view of our architecture. Though we precisely
represent the number and size of the linear layers from the network
on which we experiment, those characteristics could change as long
as φ, K and ψ keep their respective roles. The observation state is of
dimension 20 since it contains the reflectances of 10 spectral bands
along with their respective derivatives.

We use 3 different types of loss terms during our train-
ing. The main one is the prediction loss Lpred, which
directly represents the L2 distance between the model
predictions and the groundtruth. The linearity loss Llin
is the L2 distance between the predicted latent vector and
the encoding of the actual future state: it ensures that the
dynamics is linear in the latent space. The orthogonality
loss Lorth is a regularization term which encourages K
to be close to an orthogonal matrix, which favors long-
term stability as explained in [7]. Denoting Θ the set
of parameters of our model, i.e. the concatenation of 1)
the coefficients of K, 2) the parameters of φ and 3) the
parameters of ψ, these loss terms can be written as:

Lpred,τ (Θ) =
∑

1≤i≤N
1≤t≤T−τ−1

||yi,t+τ − ψ(Kτφ(yi,t))||2 (4)

Llin,τ (Θ) =
∑

1≤i≤N
1≤t≤T−τ−1

||φ(yi,t+τ )−Kτφ(yi,t)||2 (5)

Lorth(K) = ||KKT − I||2F (6)

where ||.||F is the Frobenius norm. Note that Lpred,0 is a
classical auto-encoding or reconstruction loss. Using these
basic bricks and setting τ1 = 5, τ2 = 100, we build our
short-term and long-term loss functions as:

Lshort(Θ) = β1Lorth(K) + Lpred,0(Θ)
+ Lpred,1(Θ) + Lpred,τ1(Θ) + Llin,1(Θ) + Llin,τ1(Θ) (7)

Llong(Θ) = β2Lorth(K) +
τ2∑
τ=0

(Lpred,τ (Θ) + Llin,τ (Θ))

(8)
One could want to just learn to predict from time 0, which
is what is done by the L2 loss in [7]. This approach results
in a non-robust model which makes good predictions from
time 0 but struggles to make predictions from a different
initial time.

So far, we only treated the pixels independently from
each other. We now present a simple method that enables



to exploit the spatial information of the data. We use
a trained model with frozen parameters to make long-
term predictions from y.,1 using (2), and assemble the
pixel predictions into image predictions X̂t ∈ RH×W×L
for time t. Using the groundtruth images Xt, one can
train a convolutional neural network (CNN) to learn the
residual function r : RH×W×L → RH×W×L such that
r(X̂t) = Xt − X̂t. Then, one can add the output of
this CNN to a test predicted image to get it closer to
the groundtruth. The convolutional layers are expected
to partially correct the spatial imperfections made by the
pixelwise model.

III. Presentation of the datasets
We selected two areas of interest in France: the forest of

Fontainebleau and the forest of Orléans, which are large
forestial areas in a region which is moderately cloudy.
The forest of Fontainebleau in particular has already been
studied in remote sensing [14] [15]. Also, since the two
sites are separated by about 60 kilometers, one can test a
model’s transferability by predicting the dynamics of one
area after having been trained only on the other one.

The pre-processing steps are largely inspired from the
previous work of [16], although we gathered much more
data, both in the spatial and temporal dimensions. We
retrieve the 10m and 20m resolution bands from the
Sentinel-2 images with L2A (Bottom Of Atmosphere)
correction and perform an imagewise bicubic interpolation
on each of the 20m resolution bands to bring all the data
to a 10m resolution.

Although the revisit time is only 5 days, we identify
the images that feature too many clouds and remove
elements from the time series accordingly. This results in
an incomplete time series, where about three quarters of
the images have been rejected. To obtain complete time
series, we performed temporal Cressman interpolation [17]
with Gaussian weights of radius (i.e. standard deviation)
R = 15 days.

In the end, we find ourselves with 2 image time series,
each of length T = 343 and image size 500×500. Given the
temporal and spatial resolution of the Sentinel-2 satellites,
this corresponds to a a time span of nearly 5 years and
to an area of 25 km2 each. We also extracted irregular
versions of these datasets where no temporal Cressman
interpolation has been performed. We show sample images
in Figure 2.

IV. Experiments
We use a subcrop of 150 × 150 pixels from the

Fontainebleau image time series. The first Ttrain = 242
images are used for training and the last Tval = 100
ones are kept for validation. We extract another 150×150
subcrop from the Orléans time series and use it as a test
set. We train a Koopman autoencoder using successively
(7) and (8). As shown on figure 1, the latent dimension of
our network is k = 32.

Fig. 2. Left: a temporally interpolated Fontainebleau image. Right:
a non-interpolated Orléans image. The date for both images is
20/06/2018. Those are RGB compositions with saturated colors.
The red squares indicate the 150 × 150 pixel subcrops on which we
experiment in Section IV, and the red dots mark the pixels involved
in figures 3 and 5.

A. Temporal extrapolation on the training area
We first check the ability of our model to extrapolate in

time on the Fontainebleau area. We use the first element
of the augmented time series y from (3) to make a
(Ttrain + Tval)-time steps prediction, from which the first
Ttrain elements correspond to training data while the last
Tval ones correspond to frames unseen during training.
We measure the mean squared error (MSE) between the
last Tval predicted states and the actual validation data,
averaged over all frames, pixels and spectral bands. We
show an example of such prediction for a random pixel in
figure 3.

We now train a CNN on top of our Koopman model
as described in Section II. We use predictions up to time
span Ttrain to train the CNN and then test it on the last
Tval time steps. The CNN architecture is very basic, with
just 5 convolutional layers and no pooling. The filter sizes
are all 3 × 3 and the numbers of filters of the successive
layers are 64, 64, 32, 32 and 10, totaling 79114 parameters.
As reported in table I, the CNN correction results in a
significant improvement. This can be best visualised when
plotting images of the entire predictions, as in Fig. 4.
One can see that the pixelwise predictions have spatial
artifacts in the form of a weaker spatial structure, which
is not the case after the CNN correction. Notably, the
small area which always appears green in the top row of
Figure 4, corresponding to a clearing in the forest, is not
well reconstructed by the pixelwise prediction, but this
problem is partially addressed by the CNN.
B. Data assimilation on training data

The experiment presented in the last subsection shows
that our model is indeed able to reconstitute an entire
pixel’s dynamics from only an initial condition. However,
this intuitively seems like a difficult task, while using
multiple data points to understand a pixel’s dynamics
seems easier.

We confirm this intuition by a new experiment: using a
learned model, we look for the latent initial condition z∗1



Fig. 3. Long-term prediction of reflectances from time 0 for a single
pixel from the forest of Fontainebleau, along with the groundtruth.
Blue, orange and green respectively denote the B6, B7 and B8A
bands. The vertical line marks the separation between the training
and validation data.

Fig. 4. Top: groundtruth images of Fontainebleau, corresponding to
test times. Middle: predictions made by our model from state at day
5. Bottom: correction of the middle images by a CNN trained on
the pixelwise predictions up to day 1200. The colors result from a 3-
dimensional principal component analysis (PCA) of the 10 spectral
bands performed globally on all the Fontainebleau data. This is much
more informative than an RGB composition.

from which the propagation by the model best corresponds
to the training data. Formally, for a given spatial index i,
we seek

z∗1 = arg min
z1∈Rk

Ttrain∑
t=1
||yi,t − ψ(Kt−1z1)||2. (9)

We emphasize that, here, only the latent initial con-
dition varies while the model parameters remain fixed.
This is a kind of variational data assimilation [18] where
everything is based on the data, since the model itself has
been trained fully from the data. Finding the best initial
condition is done by a gradient descent which backpropa-
gates into the whole pretrained model. This optimisation
problem is not convex, yet starting from a null initial
latent state gives satisfactory results, and starting from
the encoding of the actual initial state gives even better
ones.

When making predictions using the result of the gradi-
ent descent as the initial latent state, not only do we fit
the assimilated data very well, but we also obtain excellent
extrapolations. As can be seen in Table I, the MSE is far
lower than when predicting from only one data point.

C. Data assimilation on test data
We now move on to the Orléans site, from which no data

has been seen during training, and we aim at transfering
the knowledge of the Fontainebleau area without training
a new model. The change of area results in a data shift,
to which the task of prediction from a single reflectance
vector (like in subsection IV-A) is very sensitive, lead-
ing to relatively poor results with our model trained on
Fontainebleau. However, when performing variational data
assimilation as in section IV-B, one can perform a good
prediction without even needing a complete time series to
do so. Indeed, our model can easily handle irregular data,
and in our tests it has even been more effective to do so
than to assimilate on an interpolated time series. The only
difference is that one should only compute the prediction
error on the time indexes from the set S ⊂ {1, 2, ..., 342}
of available data, i.e. rewrite (9) as

z∗1 = arg min
z1∈Rk

∑
t∈S
||yi,t − ψ(Kt−1z1)||2. (10)

We consider a set of 94 irregularly sampled images from
the forest of Orléans, each with its associated timestamp,
over the same time interval as the training and valida-
tionov data. We intentionally kept some partially cloudy
data in this set.

First, we test our model in a classical data assimilation
setting, where we check that it is able to interpolate from
some of the data to recover the part of the data that
was kept aside. We check that our method does better
than a well-parameterized Cressman interpolation. The
setup is the following: for each image, we keep it with
a probability 0.5. We then interpolate on the retained
images and use the MSE on the removed images as the
performance measure. We perform a Gaussian Cressman
interpolation with radius 0.5, 1, ..., 6.5, 7 time steps (i.e. 2.5
to 35 days) and compare the best result to the data assimi-
lation method with our model. We repeat this experiment
with 6 different sets of retained images, looking for the
best performing Cressman parameter at each iteration,
and average the results. Our method always outperformed
the best Cressman interpolation by a margin of at least
25%. The average MSE obtained by the Cressman inter-
polation was 5.72 × 10−3, and the one from our model
was 3.36 × 10−3. One can visually assess the quality of
our interpolation on figure 5, and see that the model was
able to combine the information from different years to
recover the correct periodic pattern, ignoring the noisiest
data points.

We now perform forecasting using the same method as
in Section IV-B. We keep the last 31 images to test the



Fig. 5. Comparison of interpolations for an Orléans pixel on the B7
band, using a Cressman method and using data assimilation with our
model trained on Fontainebleau data.

Fig. 6. Top: groundtruth images of Orléans, corresponding to
test times. Middle: predictions made by our model, assimilated on
irregularly-sampled earlier images. Bottom: correction of the middle
images by a CNN trained on the assimilated data. Like in Figure
4, the colors are obtained from a 3-dimensional PCA of the Orléans
data.

prediction performance, and perform data assimilation on
the remaining images. Some results can be observed on
Figure 6.

D. Discussion of the results
Our prediction performances are synthesized in Table

I. Note that the Fontainebleau data is an interpolated
regular time series while the Orléans data corresponds to
irregularly-spaced data points with no temporal interpo-
lation.

One can observe that performing data assimilation with
several data points is generally far more effective than
performing a prediction from a single data point at time
0. Although all of our methods perform far worse on
the data from the forest of Orléans than on the training
area in the forest of Fontainebleau, the usage of data
assimilation partially mitigates the shift in the data. One
can conjecture that, although the pseudo-periodic pattern
of the reflectance dynamics does not depend on the initial
condition in the same way in the Orléans data than in the

Fontainebleau data, the model can still identify a known
pattern when fed with more data from an Orléans time
series.

Overall, backpropagating through a long time series
prediction is easy because of the simplicity of our model:
predicting one step ahead only costs one matrix-vector
multiplication, and the most computationally intensive
part of the prediction is actually the encoding and de-
coding of data.

TABLE I
Forecasting performance of our prediction models

Method Fontainebleau Orléans prediction MSE
prediction MSE

Prediction from time 0 1.87 × 10−3 7.13 × 10−3

Prediction from time 0 1.37 × 10−3 4.23 × 10−3

with CNN correction
Prediction with 2.89 × 10−4 1.15 × 10−3

data assimilation
Prediction with 2.79 × 10−4 1.07 × 10−3

data assimilation
and CNN correction

V. Conclusion
We showed an adaptation of the previously introduced

method from [7] to real satellite image time series, in order
to learn an unsupervised model which is able to perform
several downstream tasks even using irregular data. Note
that our assimilation experiment was a very simple proof
of concept since only the initial latent state was optimized
using a frozen model, yet one could also imagine a vari-
ational data assimilation procedure in which the model
parameters are allowed to vary. More generally, there
are many downstream tasks in which our model might
be of use, e.g. classification tasks in few-shot settings.
A natural extension to this work would be to show the
model ability to learn from more difficult data, for example
with a higher diversity of images, e.g. different crop types
and urban environments, with diverse underlying dynamic
patterns. One could also test the ability of our model to
handle complex spatio-temporal missing data patterns. In
particular, although we demonstrated the ability of our
trained model to handle irregular test data, the training
was still performed on regular data. A weakness of our
method is that most of the computation is done pixelwise,
and the spatial structure of the data is only used a
posteriori through a CNN model. It might be of interest to
encode some spatial information directly in the Koopman
autoencoder. Other possible extensions include the ability
to exploit a control variable or to provide uncertainties
along with the predictions.
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