
FORECASTING GRAPH SIGNALS WITH RECURSIVE MIMO GRAPH FILTERS

Jelmer van der Hoeven, Alberto Natali and Geert Leus

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, Delft, The Netherlands

ABSTRACT

Forecasting time series on graphs is a fundamental problem in graph
signal processing. When each entity of the network carries a vector of
values for each time stamp instead of a scalar one, existing approaches
resort to the use of product graphs to combine this multidimensional
information, at the expense of creating a larger graph. In this paper,
we show the limitations of such approaches, and propose extensions
to tackle them. Then, we propose a recursive multiple-input multiple-
output graph filter which encompasses many already existing models
in the literature while being more flexible. Numerical simulations on
a real world data set show the effectiveness of the proposed models.

Index Terms— Forecasting, Graph Signal Processing, Product
Graph, Multi-dimensional graph signals

1. INTRODUCTION

Forecasting time series collected by entities of a network is a central
problem in graph signal processing (GSP) [1], finding applications in
sensor [2] and social networks [3, 4], to name a few. Accounting for
the network structure in the forecasting model serves as an inductive
bias to reduce the number of estimation parameters of the model [5,
6] compared to classical vector autoregressive (VAR) models [?].
However, existing models under a GSP lens consider a scalar value
at each node for each time instant [8, 9, 6], which is a limitation in
networks where a (feature) vector of measurements is available at
each node for each time instant, such as in meteorological sensor
networks or 3D point clouds.

This multidimensional case has been recently addressed in [10]
with the introduction of a so-called feature graph, capturing the possi-
ble relationships among the features of a node of the network. There,
the authors make use of product graphs [11] to create a new larger
graph that combines in a principled way the original and the feature
graphs, which is then used to forecast these multidimensional content
by taking into account relationships among features of different nodes.
However, the knowledge of which product graph to use and how to
construct the feature graph has not been properly elaborated.

This work can be considered an extension of [10] in that: i)
we first delineate drawbacks of the proposed model and introduce
minor extensions to tackle them; then, ii) we propose a recursive
multiple-input multiple-output (MIMO) graph filter which general-
izes the already existing filters while being more flexible; finally, iii)
we put forth a method which learns the weights of the feature graph
during the training process. We limit our exposition to linear mod-
els, although non-linear autoregressive models are a subject worth
investigating. Numerical experiments on real-world data show the
effectiveness of the proposed approaches.

E-mails:{Jelmer.van.der.hoeven@pwc.com}
{a.natali;g.j.t.leus}@tudelft.nl;

2. BACKGROUND
Consider an N -dimensional time series xt ∈ RN , where entry xt(i)
represents the value at time t associated to the entry i. For instance,
xt(i) might represent the amount of water in the ith reservoir of a
water network at time t. When the relationships between the different
time series of xt can be captured by a network, let the graph G :=
(V, E ,S) model such network, where V = {v1, . . . , vN} is the set
of N nodes, E ⊆ V × V is the set of edges, and S ∈ RN×N is
the matrix representation of the graph, which captures its sparsity
pattern; i.e., Sij 6= 0 if and only if (vi, vj) ∈ E or vi = vj . We refer
to matrix S as the graph shift operator (GSO), examples of which
include the adjacency matrix and the Laplacian matrix [12, 13]. In
this context, xt is called a graph signal.

We can instantly process a graph signal xt to obtain a new graph
signal yt by means of the so-called graph convolution [1]:

yt =

K−1∑
k=0

hkS
kxt, (1)

where H(S) :=
∑K−1
k=0 hkS

k is the graph filter [14] of order K − 1
with scalar coefficients h0, . . . , hK−1. Because matrix S is sparse,
the computational complexity of the graph filtering operation (1) is
O(|E|K). To forecast time series residing on the nodes, a graph
vector autoregressive (G-VAR) model has been introduced in [6] as
the combination of a finite number of graph convolutions; specifically:

xt = −
P∑
p=1

Hp(S)xt−p = −
P∑
p=1

K−1∑
k=0

hkpS
kxt−p, (2)

where xt−p represents the graph signal at time instant t − p and
hkp represents the kth scalar filter coefficient of the p-th graph filter
Hp(S). The computational complexity of (2) is O(PK|E|) and the
number of parameters of the filter is PK, both independent of the
size of the network.

Multidimensional. When each node of the network carries a vec-
tor of F values (features) for each time instant t, we refer to such
a graph signal as being F -dimensional, and denote it as xt =
[x>t (1), . . . ,x

>
t (F)]> ∈ RNF , where each xt(f) ∈ RN is the

one-dimensional graph signal associated to feature f . In other words,
xt is the concatenation of F graph signals, each one representing the
graph signal associated to one specific feature.

To efficiently deal with such multi-dimensional graph signals, the
work in [10] proposes to model the dependencies among the features
with a so-called feature graph defined as GF := (VF , EF ,SF),
where VF = {f1,, fF } is the set of F nodes representing the
features, EF ⊆ VF ×VF is the set of edges defining how the features
are connected, and SF is the associated GSO. To formally capture
the dependencies among features of different nodes, G and GF can be
combined with the use of product graphs [15] to create a new graph

ar
X

iv
:2

21
0.

15
25

8v
1

 [
ee

ss
.S

P]
 2

7
O

ct
 2

02
2

G� = (V�, E�,S�), with node set V� of cardinality |V�| = NF ,
edge set E� ⊆ V� × V� and the NF ×NF graph shift operator S�.
Its sparsity pattern depends by the type of product graph adopted.
A novel aspect of the work in [10] comes from the realization that
all common types of product graphs, such as the Kronecker and the
Cartesian, can be parametrized as:

S� =

1∑
i=0

1∑
j=0

sij
(
SiF ⊗ Sj

)
, (3)

where sij ∈ {0, 1}, which creates a level of abstraction on the
specific product-graph choice for S�. Given a particular product
graph S�, according to (3), a product graph filter H(·) can be defined
as:

H(S�) =

K−1∑
k=0

hkS
k
�. (4)

This filter is then used to forecast the F -dimensional graph process
xt as:

xt = −
P∑
p=1

K−1∑
k=0

hkpS
k
�xt−p, (5)

which is termed product graph VAR (PG-VAR) filter, yielding a total
of PK number of parameters.
Despite the fact that the PG-VAR takes the information on related
features into account, it has some limitations. The first is that it uses a
limited amount of parameters independent of the number of features,
which might be restrictive. Secondly, even though the edge weights
E and EF may well describe the strength of the relationships in the
original graph G and in the feature graph GF , their product-graph
combination may not. In order to overcome those limitations, in
Section 3 we propose two new graph-based VAR models with an
increased amount of flexibility, and in Section 4 we discuss how to
optimally learn the feature graph weights during the training of the
forecasting process.

3. AN OVERARCHING FORECASTING MODEL

In this section, we propose two autoregressive graph-based models,
which encompass the already existing ones in the literature, tackle
the mentioned limitations and bring increased flexibility. The first
is a direct extension of the filters introduced in Section 2; the latter
is a generalization of the multiple-input multiple-output GF which
eliminates the need for knowledge of the feature graph.
Combined. Consider the PG-VAR in (5) and consider the term
associated to the index k = 0, i.e.,:

xt = −
P∑
p=1

h0p (IF ⊗ IN)xt−p. (6)

The sum in (6) simply represents NF uni-variate auto-regressive
filters, where all filters are constrained to have the same set of param-
eters h0p. This might be a restriction since it weighs similarly all the
features in every node.

For this reason, we first propose a minor extension of (5) by adapt-
ing its zero-th order coefficients, with a set of F feature-dependent
parameters h(f)

0p . That is:

xt = −

(
P∑
p=1

(diag(h0p)⊗ IN) +

P∑
p=1

K−1∑
k=1

hkpS
k
�

)
xt−p, (7)

where h0p = [h
(1)
0p , . . . , h

(F)
0p]> ∈ RF , and h(f)

0p represents the zero-
th order filter coefficient associated to the f th feature of the pth filter.
The GSO S� in the second sum represents any type of product graph,
without loss of generality. This model can be seen as a combination of
a G-VAR model for each feature independently, where the graph filter
order is zero, with a PG-VAR model, where the graph filter orders of
zero are not included. To even further extend the degrees of freedom
of (7), we generalize it through the combination of a G-VAR model,
which forecasts each feature independently, with a PG-VAR. We will
refer to the combined PG-VAR and G-VAR as the PG-G-VAR model,
which is defined as

xt = −

(
P∑
p=1

K−1∑
k=0

(
diag(hkp)⊗ Sk

)
+

P∑
p=1

K−1∑
k=0

hkpS
k
�

)
xt−p,

(8)

where hkp = [h
(1)
kp , . . . , h

(F)
kp]> ∈ RF , and h(f)

kp is the kth order
graph filter coefficient associated to the f th feature of the pth filter.
Compared to a G-VAR per feature, the number of parameters is
increased only by a small amount to PK(F + 1). This increase
comes with the flexibility of modeling each feature separately using
the G-VAR and also include information of related features using a
type of product graph and the importance of each model is weighted
by their graph filter coefficients.
MIMO G-VAR. We can further extend the expressiveness of the filter,
especially when the feature graph SF is not readily available. To this
extent, consider an F -dimensional graph signal xt, and consider F
separate G-VAR filters, all with same orders P and K (without loss
of generality), which independently forecast each feature of xt; i.e.:

xt = −
P∑
p=1

K−1∑
k=0

(
diag(hkp)⊗ Sk

)
xt−p. (9)

There are a total of FKP coefficients in this model to estimate. To
take the influence that features have on each other into account, the
diagonal matrix of filter coefficients can be extended into a full matrix
with learnable parameters:

xt = −
P∑
p=1

K−1∑
k=0

(
Hkp ⊗ Sk

)
xt−p, (10)

where the matrices Hkp ∈ RF×F contain the filter coefficients asso-
ciated to each time-lag p and filter order k. To gain more intuition
on (10), we can rewrite it as:

Xt = −
P∑
p=1

K−1∑
k=0

SkXt−pHkp, (11)

where Xt = [xt(1), . . . ,xt(F)], i.e., it is the matrix which con-
tains in the f th column the one-dimensional graph signal related to
feature f at time t. From (11), it is easy to see that the predicted fea-
ture values of xt(f) are given by a linear combination of F G-VAR
models where each model uses a different feature as input. Another
interpretation of the operation in (11) is that the left-multiplication
of the data matrix Xt−p shifts over the graph G, while the right-
multiplication with matrix Hkp shifts (averages) over the features of
each individual node. This multidimensional graph filtering opera-
tion corresponds to a MIMO graph filter [16], and we refer to this
graph-based VAR model as the MIMO G-VAR. This model has a
total amount of PKF 2 learnable parameters and a computational
complexity of O(PKF 2 |E|).

4. PARAMETER ESTIMATION

In this section we first elaborate on the least-squares (LS) estimation
of the graph filter coefficients, then we propose an estimation method
that jointly learns the filter coefficients and the feature graph.

4.1. Multivariate Least Squares Estimator

The first method is the multivariate LS estimator, which is one of
the most used methods to estimate VAR coefficients [?]. Notice
that all the proposed graph-based VAR models are linear in the filter
coefficients; as such, with a proper reshaping of the matrices involved
in the filtering operations, they can be estimated in a similar way. For
simplicity, we will show the estimation for the G-VAR case. Assume
there are T + P multi-dimensional graph signal samples available.
Let h ∈ RKP represent the vector that contains the unknown filter
coefficients of the G-VAR. The least-squares estimator to find the
filter coefficients that best fit the data is given by the argument that
minimizes the sum of squared errors. For the G-VAR this is written
as,

ĥ = arg min
h

T∑
t=1

∥∥∥∥∥xt +
P∑
p=1

Hp(S)xt−p

∥∥∥∥∥
2

2

. (12)

where h = [h01, . . . , h0P , . . . , hK1, . . . , hKP]
T . This minimiza-

tion has a closed-form solution, which for the G-VAR can easily be
formulated if the model is rewritten as a matrix-vector product. Using
all T + p samples, we define

X =

 xP−1 · · · x0

... · · ·
...

xT+P−1 · · · xT


A =

[(
IT ⊗ S0

)
X · · ·

(
IT ⊗ SK−1

)
X
]

(13)

b = [x>P−1, . . . ,x
>
T+P]

>

With this notation in place, we can rewrite (12) as:

ĥ = argmin
h
‖b+Ah‖22, (14)

for which the LS solution is given by:

ĥ = −(ATA)−1ATb = −A†b. (15)

4.2. A Joint estimation approach

When the feature graph is not available from the context of interest,
a possible approach is to learn it together with the filter coefficients.
To find the feature graph that best suits the product graph-based VAR
model, we propose to identify the weights of the GSO by minimizing
the forecasting error. As the optimal graph filter coefficients are
dependent on the used feature GSO we jointly estimate them, e.g. for
the Kronecker PG-VAR this joint problem is defined as:

ĥ, ŜF = argmin
h,SF

T∑
t=1

∥∥∥∥∥xt −
P∑
p=1

K−1∑
k=0

hkp(SF ⊗ S)kxt−p

∥∥∥∥∥
2

2

s. t. supp(SF) ⊆ supp(S
(0)
F) (16)

where S
(0)
F represents the initial chosen GSO of the feature graph

and supp(·) is the set of non-zero elements of the argument, i.e., we

assume its sparsity pattern is available from the application at hand.
This is a non-convex problem, due to the polynomials of the feature
GSO.

In order to tackle the non-convexity of the problem, we use the
method in [17], where h and SF are estimated iteratively using an al-
ternating minimization (AM) approach where the non-convex portion
of the problem is solved through the sequential convex programming
(SCP) paradigm [18]. The pseudo-code that describes our AM ap-
proach is given in Algorithm 1. In this algorithm, we use the estimate
of SF at the (n − 1)th iteration to find the vector of parameters h,
which is obtained by solving

ĥ = argmin
h

T∑
t=1

∥∥∥∥∥xt −
P∑
p=1

K−1∑
k=0

hkp(SF ⊗ S)kxt−p

∥∥∥∥∥
2

2

. (17)

As shown above, in Section 4.1, this is a linear least-squares problem,
which has a closed-form solution as defined in (15). We then use
the estimated graph-based VAR parameters at the nth iteration to
estimate SF . This estimate is found by minimizing the original
objective function with respect to the feature GSO:

ŜF = argmin
SF

T∑
t=1

∥∥∥∥∥xt −
P∑
p=1

K−1∑
k=0

hkp(SF ⊗ S)kxt−p

∥∥∥∥∥
2

2

s. t. supp(SF) ⊆ supp(S
(0)
F) (18)

This problem is still non-convex, but it is a lighter problem than (16).
A non-convex method can be used to obtain ŜF , as the gradient is
not hard to find, we use the sequential quadratic programming (SQP)
method; see [17] for details.

Algorithm 1 Joint GF and feature GSO

Require: S
(0)
F , ε > 0

1: n← 1
2: while not converged do
3: h(n) ← argmin

h
f
(
h,S

(n−1)
F

)
. See equation (17)

4: S
(n)
F ← argmin

SF
f
(
h(n),SF

)
. See equation (18)

5: Check convergence (h(n),S
(n)
F , ε)

6: n← n+ 1
7: end while
8: return h(n),S

(n)
F

5. NUMERICAL RESULTS

To evaluate the models we use a sliding window cross-validation
setup [19]; specifically, the time series are split along the temporal
axis into three parts: an in-sample, an out-of-sample, and a left-out
part. The in-sample data, which is further split into a training and
validation set following a 70%/30% scheme [20], is used to find the
optimal model hyperparameters through a grid search (such as P
and K) and to estimate the filter coefficients; the out-of-sample data
serves as a “test” set to measure the prediction accuracy. The left-out
part of each iteration consist of the data that is not taken into account.
At each iteration the in-sample and out-of-sample parts slide over the
data set, creating multiple data sets where the models can be trained
and evaluated over. The performance metric considered is the root

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.26

0.265

0.27

0.275

0.28

R
N

M
S

E G-VAR
MIMO G-VAR
PG-VAR
PG-G-VAR

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.26

0.265

0.27

0.275

0.28

R
N

M
S

E

G-VAR
MIMO G-VAR
PG-VAR
PG-G-VAR

(b)

Fig. 1: RNMSE versus the amount of in-sample data for the different graph-based models. Where at (a) the results are shown when the initial
feature graph is used and at (b) the joint estimation method is used to find the optimal feature edge weights.

normalized mean squared error (RNMSE) over the out-of-sample
data for all iterations, which is defined as:

RNMSE =

√∑τ
t=1 ‖x̃t − xt‖22∑τ

t=1 ‖xt‖
2
2

, (19)

where τ is the number of signals considered to compute the RNMSE,
xt is the true graph signal, and x̃t is the predicted signal.

5.1. Data set

We evaluate the performance of the graph-based forecasting models
on the Beijing air-quality data set [21, 22]. There are F = 10
features considered, 6 types of air pollutants (PM2.5, PM10, SO2,
NO2, CO, O3) and 4 weather-related variables (temperature, pressure,
dew point, and wind speed), all recorded by N = 12 air-quality
monitoring stations, representing our nodes, in the Beijing area. The
data considered is from 20 July 2015 at 7:00 to 5 September 2016
at 13:00, which results in a set of T = 9918 hourly measurements.
The graph regarding the measurement stations is constructed with a 3
nearest neighbors approach, based on the geographical distances and
has edge weights defined by a Gaussian kernel weighting function,
similar to [6]. The feature graph is constructed by connecting each
feature to its two most correlated features. We use the normalized
Laplacian as GSO for both the station graph and the feature graph.

5.2. Results

We evaluate our proposed models , the MIMO G-VAR and the PG-
G-VAR, and compare their performance with the PG-VAR and G-
VAR. The Cartesian graph product is considered as the product graph
type that models the relations between the station graph and the
feature graph. The following sets of parameter values are taken into
consideration : P,K ∈ {1, . . . , 5}. For all data sets, the range of
in-sample data samples considered is from 200 to 2000, and the out-
of-sample data consists of 168 hourly measurements, i.e. one week
of data. The amount of iterations is 20, and at every iteration, all data
is shifted with the number of out-of-sample data points.

First, we evaluate the results with the initial defined feature GSO
and do not use the joint estimation method to estimate it. From
the results in Fig. 1a, it can be seen that, as we expected due to
its limitations, the PG-VAR model has a decreased performance
compared to the G-VAR for each feature. The combined PG-G-
VAR model increases the accuracy compared to the G-VAR. The
MIMO G-VAR needs more training data since it is the most flexible,
but eventually has the best performance. Secondly, in Fig. 1b the

results are shown for the case we do estimate the weights of the
feature GSO jointly with the graph filter coefficients. A significant
increase in accuracy can be seen for the PG-VAR and PG-G-VAR
models. However, although the PG-VAR shows an improvement
it still performs less than the other methods. The joint estimation
method results for the PG-G-VAR model show that it outperforms
all other methods for smaller amounts of in-sample data. Except for
the 200 in-sample data size where it has a similar performance as the
G-VAR, and for larger amounts of in-sample data where it has now
a similar performance as the MIMO G-VAR model. This illustrates
the importance of estimating the edge weights of the feature graph
when a product graph is applied. Further, it showcases the advantage
offered by using a priori knowledge of the feature graph, which makes
it work well with lower amounts of in-sample data.

6. CONCLUSION

In this paper, we proposed two new models to forecast multi-
dimensional graph signals, the PG-G-VAR and MIMO G-VAR
models. Further, we applied a joint estimation approach to estimate
the graph filter coefficients together with the weights of the feature
graph. The results indicate that our limitation assumptions regarding
the PG-VAR are correct, as it shows a reduced prediction performance
compared to the G-VAR model per feature. On the other hand, the
results show a clear improved prediction accuracy for the models
introduced in this paper, especially for more training data.

Further work is needed to enhance the proposed PG-G-VAR
model’s estimation cost. Especially in the direction of finding optimal
weights of the feature graph, as the numerical experiments showed
that estimating SF leads to increased forecasting performance, but
with the cost that a non-convex problem has to be solved. A possible
solution for this would be to apply a constrained edge-variant graph
filter [23], to the feature graph. In this filter, each element in the
GSO is weighted individually by a graph filter coefficient, before it
is used in the filtering operation. This results in a linear model with
respect to these graph filter coefficients.

7. REFERENCES

[1] David Shuman, Sunil K. Narang, Pascal Frossard, Antonio
Ortega, and Pierre Vandergheynst, “The emerging field of
signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE Signal
Processing Magazine, vol. 30, 10 2012.

[2] Ireneusz Jabłoński, “Graph signal processing in applications to
sensor networks, smart grids, and smart cities,” IEEE Sensors
Journal, vol. 17, no. 23, pp. 7659–7666, 2017.

[3] Ali Dehghantanha, “Mining the social web: Data mining face-
book, twitter, linkedin, google+, github, and more , by matthew
a. russell,” Journal of Information Privacy and Security, vol.
11, pp. 137–138, 04 2015.

[4] Dmitri Goldenberg, “Social network analysis: From graph
theory to applications with python,” CoRR, vol. abs/2102.10014,
2021.

[5] Jonathan Mei and Jose Moura, “Signal processing on graphs:
Causal modeling of unstructured data,” IEEE Transactions on
Signal Processing, vol. PP, pp. 1–1, 12 2016.

[6] Elvin Isufi, Andreas Loukas, Nathanaël Perraudin, and Geert
Leus, “Forecasting time series with varma recursions on graphs,”
IEEE Transactions on Signal Processing, vol. 67, no. 18, pp.
4870–4885, 2019.

[7] Helmut Lütkepohl, New introduction to multiple time series
analysis, Springer, 2005.

[8] Daniel Romero, Vassilis Ioannidis, and G.B. Giannakis,
“Kernel-based reconstruction of space-time functions on dy-
namic graphs,” IEEE Journal of Selected Topics in Signal
Processing, vol. PP, 12 2016.

[9] Paolo Di Lorenzo, Paolo Banelli, Elvin Isufi, Sergio Barbarossa,
and Geert Leus, “Adaptive graph signal processing: Algorithms
and optimal sampling strategies,” IEEE Transactions on Signal
Processing, vol. 66, no. 13, pp. 3584–3598, 2018.

[10] Alberto Natali, Elvin Isufi, and Geert Leus, “Forecasting multi-
dimensional processes over graphs,” in ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 5575–5579.

[11] Aliaksei Sandryhaila and Jose M.F. Moura, “Big data analysis
with signal processing on graphs: Representation and process-
ing of massive data sets with irregular structure,” IEEE Signal
Processing Magazine, vol. 31, no. 5, pp. 80–90, 2014.

[12] Aliaksei Sandryhaila and José M. F. Moura, “Discrete signal
processing on graphs: Frequency analysis,” IEEE Transactions
on Signal Processing, vol. 62, no. 12, pp. 3042–3054, 2014.

[13] Antonio Ortega, Pascal Frossard, Jelena Kovacevic, Jose Moura,
and Pierre Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proceedings of the IEEE, vol.
106, pp. 808–828, 05 2018.

[14] Aliaksei Sandryhaila and José M. F. Moura, “Discrete signal
processing on graphs,” IEEE Transactions on Signal Processing,
vol. 61, no. 7, pp. 1644–1656, 2013.

[15] Richard Hammack, Wilfried Imrich, and Sand Klavžar, “Hand-
book of product graphs,” 01 2011.

[16] Fernando Gama, Antonio G. Marques, Alejandro Ribeiro, and
Geert Leus, “Mimo graph filters for convolutional neural net-
works,” in 2018 IEEE 19th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC),
2018, pp. 1–5.

[17] Alberto Natali, Mario Coutino, and Geert Leus, “Topology-
aware joint graph filter and edge weight identification for net-
work processes,” 07 2020.

[18] Stephen Boyd, “Sequential convex programming,” Lecture
Notes, Stanford University, 2008.

[19] Vitor Cerqueira, Luís Torgo, and Igor Mozetič, “Evaluating time
series forecasting models: an empirical study on performance
estimation methods,” Machine Learning, vol. 109, pp. 1–32, 11
2020.

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The
Elements of Statistical Learning, Springer Series in Statistics.
Springer New York Inc., New York, NY, USA, 2001.

[21] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and
Song Xi Chen, “Cautionary tales on air-quality improvement
in beijing,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 473, 2017.

[22] Dheeru Dua and Casey Graff, “UCI machine learning reposi-
tory,” 2017.

[23] E. Isufi, Graph-time signal processing: Filtering and sampling
strategies, Ph.D. thesis, Delft, The Netherlands, 2019.

	1 Introduction
	2 Background
	3 An Overarching Forecasting Model
	4 Parameter estimation
	4.1 Multivariate Least Squares Estimator
	4.2 A Joint estimation approach

	5 Numerical Results
	5.1 Data set
	5.2 Results

	6 Conclusion
	7 References

